Formal Methods Module IlI:

!'_ Verification of parallel programs

Non-deterministic programs

i General notes about parallelism

= Parallel programs are compositions of sequential
processes (threads).

= Processes are implemented as (possibly non-
deterministic) sequential programs.

= [WO basic inter-process communication mechanisms:

= Shared variables;
= Mmessage passing.

Principles of verifying parallel
programs

= Observation:

= The behaviour of whole system does not depend only on the
interacting processes alone

= but also on the communication mechanism between the
processes

= and the order (timing) of communication actions.

= Thus, the communication must be made explicit to verify
the program in whole!

Example of necessity to make the
interleavings of processes explicit

= What is the result of executing a simple parallel program?
= Process 1:: X :=0; ¥ :=X + 1;
= Process 2:: X :=1; Y := X + 2;

= Possible interleaving of executions:
= <P1.1,P1.2,P2.1,P2.2>— {X=1, Y=3}
= <P2.1,P2.2,P1.1, P1.2>— {X=0, Y=1}
= <P1.1,P2.1,P2.2, P2.1>— {X=1, Y=2}

= Due to the interleavings the number of possible final
results explodes

General verification strategy

We prefer to reuse the Hoare logic for while-programs, i.e. to

prove processes at first /ocally and thereafter whole system.

To verify local correctness we need assertions (contracts) about

the local effect of communication (i.e. extra lemmas about it).

The communication assertions need to be generated and verified:
» the /nterference test (IFT) if communication via shared variables ;

» the co-operation test (COOP) if communication via message passing.

Finally, whole system correctness is verified by using local proofs,

communication assertions and parallel composition rule.

Non-deterministic sequential programs

= Languages GCL and GCL+ are
= guarded command languages designed by E. Dijkstra

= they include non-deterministic counterparts of
« 1f - command and
= while —command

they differ slightly by their syntactic structure

= GCL is more compact than GCL+.

Syntax of GCL and GCL+

Pvar — set of program variables:
= X € Pvar
VAL- set of possible values including natural numbers:
= aeVAL
Arithmetic expressions:
= en=a|x | (ept+e)| (e -e)|(e;-e)
Boolean expressions:
= bi=e =e,|e;<e,| =b|byVvDb,

i GCL / GCL+

s Commands:

(different in GCL+)

GCL / GCL+ (continued)

= Assignment.
= XZ e
= assigns value of vector e to the variable vector x
s Sequential composition:
= C,;C,
» first execute C, and continue with the execution of C, if and
when C, terminates.

GCL / GCL+ (continued)

= Guarded command:
1f "z b — C; fi
also written as
ifb,—>C;[]1 .. []1 b,—>C, £fi

= abort if none of the guards b, evaluates to true;

= otherwise, nondeterministically select one of the b, that
evaluates to true and execute the corresponding C, .

GCL (continued)

s Iteration:
do [1%;, ., by > C; od % in GCL only

= repeats execution of guarded command C; as long as at least
one of the guards b, evaluates to true;

= when none of the guards evaluates to true, the iteration
terminates (acts like skip).

GCL+

Commandes.
C:=
(b > x :1= e) }
c, ; C, Same as in GCL
if [172:b;—>C; £i
do Cz[] (Cz; exit)od

= Where C;, Cy, Cc are guarded commands (nesting),
= (C,; exit) isterminating branch of the loop.

GCL+ (continued)

= Iteration:
do Cg [1 (Cg; exit) od

= is the repeated execution of guarded command C; as long as at
least one of the guards in C; evaluates to frve

= or the guard of the finishing command C. evaluates to frue.

= Command C is guarded command, if C has a form:
= (b v:=e) (atomic) guarded assignment;
= C; C, where C, is a guarded command;
= if [17,_, bj—> C; £f1 where every C, is a guarded command

Proof system for GCL+ programs

= The “assignment” and “skip” axioms of deterministic sequential
programs are same for GCL+.
Axiom 3 (guard):
{b=Q}b {Q}

= Note: guard evaluation is an atomic operation.

Axiom 4 (guarded assignment):
= {b=Q[e/X]} (b > x:=e){Q}

= Note:
= Given axiomatic system is not minimal,
=« axioms 1-3 can be deduced from axiom 4.

i GCL+ inference rules (continuation)

= Weakening, strengthening and sequential composition
rules apply in GCL+.

Rule 3 (choice):

Vie{l .. .n:{P3}C{Q}
{(P}if [*,, C, fi {Q}

Rule 4 (guarded command):

Fvie{l,... . n}:{PADb3IC{Q}
F{P} if [*;., b; - C, fi {Q}

‘L GCL+ inference rules (continuation)

= Rule 5 (exit-loop):

F{P}C:{P1}. F{P3}C. {Q} P- invariant
F{P}do Cz J (Cg; exit) od {Q}

= Rule 6 (do-loop):
I vie{l..nk:{PAb}C{P}
F{P } do =1 b;— C;0d {P A —bg}

where bg = \V"_, b,

GSL+ verification example

Integer division:
= x — dividend (non-negative integer)
= v —divisor (positive integer)
= g —quotient
= r —reminder

We are looking for a GSL+ program Div, for the specification
{x>0 Ay>0} Div {post_div},
where

post div=x=q-y+r A0<r<y,
Div does not change x and vy

GSL+ verification example (continuation)

Solution 1:
Divl =
g, r := 0, x; // atomic assignment
do
v < r — q,r := g+l, r-y
od

construct an invariant | by strengthening the post-condition of the loop

= Example:
= from (I A= (y <r)) = post_div,
= Wwe get | = Xx=q-y+ra0<r

GSL+ verification example (continuation)

Annotate the program, using the invariant | =x=q-y+ra0<r

{x>0Ay>0}

g, r := 0,x;

do {l}

v < r — g, r := g+l, r-y

od {lAr—= (y<r)}
{x=q-y+r A0<r<y}

Check the partial correctness of given annotations:

1. (X>0AY>0)=>X=0 -y+XxXA0<X)
{x>0Ay>0}q,r :=0,x{l}

2. (X=q-V+r A0<r Av<nN=x=(a+1) -y + (r-y) A0 < (r -y))
{Ianlys<n}rqgri=q+l, r-y{l}
3. (IAn=(y<rn)=x=q-y+r A0<r<y

Exercise: GCD

Show that the following program finds the gcd(x, y) and returns the result in x.

Use axioms of gcd:
gcd(a,0) =a
gcd(a,a) =a
a>b = gcd(a, b)=gcd(a-b, b)
a<b = gcd(a, b)=gcd(a, b-a)

Exercise 2

Annotate and verify the program that computes max of x and v
[
Xzy —> In:=X
[]
y=zX — m:=Yy
]

