Formal Methods Module III:
 Verification of parallel programs

Non-deterministic programs

General notes about parallelism

- Parallel programs are compositions of sequential processes (threads).
- Processes are implemented as (possibly nondeterministic) sequential programs.
- Two basic inter-process communication mechanisms:
- shared variables;
- message passing.

Principles of verifying parallel programs

- Observation:
- The behaviour of whole system does not depend only on the interacting processes alone
- but also on the communication mechanism between the processes
- and the order (timing) of communication actions.
- Thus, the communication must be made explicit to verify the program in whole!

Example of necessity to make the interleavings of processes explicit

- What is the result of executing a simple parallel program?
- Process 1::
$\mathrm{X}:=0 ; \mathrm{Y}:=\mathrm{X}+1$;
- Process 2:: $\mathrm{X}:=1 ; \mathrm{Y}:=\mathrm{X}+2$;
- Possible interleaving of executions:
- <P1.1, P1.2, P2.1, P2.2> $\rightarrow\{\mathrm{X}=1, \mathrm{Y}=3\}$
- 〈P2.1, P2.2, P1.1, P1.2> $\rightarrow\{\mathrm{X}=0, \mathrm{Y}=1\}$
- <P1.1, P2.1, P2.2, P2.1> $\rightarrow\{\mathrm{X}=1, \mathrm{Y}=2\}$
- Due to the interleavings the number of possible final results explodes

General verification strategy

- We prefer to reuse the Hoare logic for while-programs, i.e. to prove processes at first locally and thereafter whole system.
- To verify local correctness we need assertions (contracts) about the local effect of communication (i.e. extra lemmas about it).
- The communication assertions need to be generated and verified:
- the interference test (IFT) if communication via shared variables ;
- the co-operation test (COOP) if communication via message passing.
- Finally, whole system correctness is verified by using local proofs, communication assertions and parallel composition rule.

Non-deterministic sequential programs

- Languages GCL and GCL+ are
- guarded command languages designed by E. Dijkstra
- they include non-deterministic counterparts of
- if - command and
- while - command
- they differ slightly by their syntactic structure
- GCL is more compact than GCL+.

Syntax of GCL and GCL+

- Pvar - set of program variables:
- $x \in$ Pvar
- VAL- set of possible values including natural numbers:
- $a \in V A L$
- Arithmetic expressions.
- $e::=a|x|\left(e_{1}+e_{2}\right)\left|\left(e_{1}-e_{2}\right)\right|\left(e_{1} \cdot e_{2}\right)$
- Boolean expressions.
- $b::=e_{1}=e_{2}\left|e_{1}<e_{2}\right| \neg b \mid b_{1} \vee b_{2}$

GCL / GCL+

- Commands.

$$
\begin{aligned}
C::= & \\
& \bar{x}:=\bar{e} \\
& C_{1} ; C_{2} \\
\mid \text { if }[]{ }^{n}{ }_{i=1} & b_{i} \rightarrow C_{i} \text { fi } \\
& \text { do }[]^{n}{ }_{i=1}
\end{aligned} b_{i} \rightarrow C_{i} \text { od } .
$$

(different in GCL+)

GCL / GCL+ (continued)

- Assignment.
- $\bar{x}:=\bar{e}$
- assigns value of vector \bar{e} to the variable vector \bar{x}
- Sequential composition:
- $C_{1} ; C_{2}$
- first execute C_{1} and continue with the execution of C_{2} if and when C_{1} terminates.

GCL / GCL+ (continued)

- Guarded command:

$$
\text { if }[]_{i=1}^{n} b_{i} \rightarrow C_{i} \mathrm{fi}
$$

also written as

$$
\text { if } b_{1} \rightarrow C_{1}[] \quad \ldots \quad[] \quad b_{n} \rightarrow C_{n} \text { fi }
$$

- abort if none of the guards b_{i} evaluates to true;
- otherwise, nondeterministically select one of the b_{i} that evaluates to true and execute the corresponding C_{i}.

GCL (continued)

- Iteration:

$$
\text { do }[]_{i=1}^{n} b_{i} \rightarrow C_{i} \text { od } \quad \% \text { in GCL only }
$$

- repeats execution of guarded command C_{i} as long as at least one of the guards b_{i} evaluates to true;
- when none of the guards evaluates to true, the iteration terminates (acts like skip).

GCL+

Commands.

$$
\left.\begin{array}{l}
C::= \\
\langle b \rightarrow \bar{x}:=\bar{e}\rangle \\
\quad \mid C_{1} ; C_{2} \\
\quad \text { if }[] n_{i=1} b_{i} \rightarrow C_{i} \text { fi }
\end{array}\right\} \text { Same as in GCL }
$$

- where C_{i}, C_{B}, C_{E} are guarded commands (nesting),
- (C_{E}; exit) is terminating branch of the loop.

GCL+ (continued)

- Iteration:

```
do \(C_{B}\) [] ( \(C_{E}\); exit) od
```

- is the repeated execution of guarded command C_{B} as long as at least one of the guards in C_{B} evaluates to true
- or the guard of the finishing command C_{E} evaluates to true.
- Command C is guarded command, if C has a form:
- $\langle b \rightarrow \bar{v}:=\bar{e}\rangle \quad$ (atomic) guarded assignment;
- $C_{1} ; C_{2}$ where C_{1} is a guarded command;
- if [] ${ }_{i=1} b_{i} \rightarrow C_{i}$ fi where every C_{i} is a guarded command

Proof system for GCL+ programs

- The "assignment" and "skip" axioms of deterministic sequential programs are same for GCL+.
Axiom 3 (guard):
$\{b \Rightarrow Q\}$ b $\{Q\}$
- Note: guard evaluation is an atomic operation.

Axiom 4 (guarded assignment):

- $\{b \Rightarrow Q[e / x]\}\langle\mathrm{b} \rightarrow \mathrm{x}:=\mathrm{e}\rangle\{Q\}$
- Note:
- Given axiomatic system is not minimal,
- axioms 1-3 can be deduced from axiom 4.

GCL+ inference rules (continuation)

- Weakening, strengthening and sequential composition rules apply in GCL+.

Rule 3 (choice):

$$
\frac{\forall i \in\{1, \ldots, n\}:\{P\} C_{i}\{Q\}}{\{P\} \text { if } \square_{i=1}^{n} C_{i} \text { fi }}\left\{\begin{array}{l}
\{Q\} \\
\hline
\end{array}\right.
$$

Rule 4 (guarded command):

$$
\begin{aligned}
& \vdash \forall i \in\{1, \ldots, n\}:\left\{P \wedge b_{i}\right\} C_{i}\{Q\} \\
& \quad \vdash\{P\} \text { if } \square_{i=1}^{n} b_{i} \rightarrow C_{i} \text { fi }\{Q\}
\end{aligned}
$$

GCL+ inference rules (continuation)

- Rule 5 (exit-loop):

$$
\frac{f\{P\} C_{\underline{B}}\{P\}, \quad \vdash\{P\} C_{E}\{Q\}}{f\{P\} \text { do } C_{B} \square\left(C_{E} ; \text { exit }\right) \text { od }\{Q\}} \quad P \text {-invariant }
$$

- Rule 6 (do-loop):

$$
\frac{\forall \quad \forall i \in\{1, \ldots, n\}:\left\{P \wedge b_{i}\right\} C_{i}\{P\}}{\vdash\{P\} \operatorname{do} \square_{i=1}^{n} b_{i} \rightarrow C_{i} \circ d\left\{P \wedge \neg b_{G}\right\}}
$$

where $b_{G} \cong \bigvee^{n}{ }_{i=1} b_{i}$

GSL+ verification example

Integer division:

- x - dividend (non-negative integer)
- y - divisor (positive integer)
- q -quotient
- r - reminder

We are looking for a GSL+ program Div, for the specification

$$
\{x \geq 0 \wedge y>0\} \text { Div }\{\text { post_div }\}
$$

where

$$
\text { post_div } \equiv x=q \cdot y+r \wedge 0 \leq r<y,
$$

Div does not change x and y

GSL+ verification example (continuation)

Solution 1:

$\operatorname{Div} 1 \equiv$

$$
\begin{aligned}
& \text { q, } r:=0, x ; \quad \text { // atomic assignment } \\
& \text { do } \quad y \leq r \rightarrow \quad q, r:=q+1, r-y \\
& \text { od } \quad y \leq r
\end{aligned}
$$

construct an invariant I by strengthening the post-condition of the loop

- Example:
- from

$$
(I \wedge \neg(y \leq r)) \Rightarrow \text { post_div }
$$

- we get $\quad I \equiv x=q \cdot y+r \wedge 0 \leq r$

GSL+ verification example (continuation)

Annotate the program, using the invariant $I \equiv x=q \cdot y+r \wedge 0 \leq r$

$$
\begin{aligned}
& \{x \geq 0 \wedge y>0\} \\
& \quad q, r \quad:=0, x ; \\
& \text { do } \quad\{I\} \\
& \quad y \leq r \quad \rightarrow \quad q, r:=q+1, r-y \\
& \text { od }\{I \wedge \neg(y \leq r)\} \\
& \{x=q \cdot y+r \wedge 0 \leq r<y\}
\end{aligned}
$$

Check the partial correctness of given annotations:
1.

$$
\frac{(x \geq 0 \wedge y>0) \Rightarrow(x=0 \cdot y+x \wedge 0 \leq x)}{\{x \geq 0 \wedge y>0\} q, r:=0, x\{I\}}
$$

2. $(x=q \cdot y+r \wedge 0 \leq r \wedge y \leq r) \Rightarrow(x=(q+1) \cdot y+(r-y) \wedge 0 \leq(r-y))$

$$
\{I \wedge(y \leq r)\} q, r:=q+1, r-y\{I\}
$$

3. $(I \wedge \neg(y \leq r)) \Rightarrow x=q \cdot y+r \wedge 0 \leq r<y$

Exercise: GCD

Show that the following program finds the $\operatorname{gcd}(x, y)$ and returns the result in x.

```
X,Y := X,Y
do
    X>Y }->\textrm{X}:=\textrm{X}-\textrm{Y
[]
    Y>X }->\textrm{Y}:=Y-
od
```

Use axioms of $g c d$:

$$
\begin{aligned}
& \operatorname{gcd}(a, 0)=a \\
& \operatorname{gcd}(a, a)=a \\
& a>b \Rightarrow \operatorname{gcd}(a, b)=\operatorname{gcd}(a-b, b) \\
& a<b \Rightarrow \operatorname{gcd}(a, b)=\operatorname{gcd}(a, b-a)
\end{aligned}
$$

Exercise 2

Annotate and verify the program that computes max of x and y

```
    [
    x\geqy -> m:=x
    []
Y}\geq\textrm{X}->\textrm{m}:=\textrm{Y
]
```

