
Formal Methods Module III: 

Verification of parallel programs 

 
Non-deterministic programs 

 



General notes about parallelism 

 Parallel programs are compositions of sequential 
processes (threads). 

 Processes are implemented as (possibly non-
deterministic) sequential programs. 

 Two basic inter-process communication mechanisms: 
 shared variables; 

 message passing. 



Principles of verifying parallel 
programs 

 Observation: 

 The behaviour of whole system does not depend only on the 
interacting processes alone 

 but also on the communication mechanism between the 
processes  

 and the order (timing) of communication actions. 

 Thus, the communication must be made explicit to verify 
the program in whole! 



Example of necessity to make the 
interleavings of processes explicit 

 What is the result of executing a simple  parallel program? 
 Process 1:: X := 0; Y := X + 1; 

 Process 2::  X := 1; Y := X + 2; 

 

 Possible interleaving of executions: 
 <P1.1, P1.2, P2.1, P2.2>  {X=1, Y=3} 

 <P2.1, P2.2, P1.1, P1.2>  {X=0, Y=1} 

 <P1.1, P2.1, P2.2, P2.1>  {X=1, Y=2} 

 ... 

 Due to the interleavings the number of possible final 
results explodes 



General verification strategy 

 We prefer to reuse the Hoare logic for while-programs, i.e. to 

prove processes at first locally and thereafter whole system. 

 To verify local correctness we need assertions (contracts) about 

the local effect of communication (i.e. extra lemmas about it). 

 The communication assertions need to be generated and verified: 

 the interference test (IFT) if communication via shared variables ; 

 the co-operation test (COOP) if communication via message passing. 

 Finally, whole system correctness is verified by using local proofs, 

communication assertions and parallel composition rule. 



Non-deterministic sequential programs 

 Languages GCL and GCL+ are 

 guarded command languages designed by E. Dijkstra 

 they include non-deterministic counterparts of 
 if - command and  

 while – command 

 they differ slightly by their syntactic structure  

 GCL is more compact than GCL+. 



Syntax of GCL and GCL+ 

 Pvar – set of program variables: 

 x  Pvar 

 VAL- set of possible values including natural numbers: 

 a VAL 

 Arithmetic expressions:     
 e ::= a | x  |  (e1 + e2) | (e1 - e2) | (e1  e2) 

 Boolean expressions:      
 b ::= e1 = e2 | e1 < e2 |  b | b1  b2 



GCL / GCL+ 

 Commands: 

 C ::=  

   x :=e   

  | C1 ; C2  

  | if []ni=1 bi  Ci  fi   

  | do []ni=1 bi  Ci  od  (different in GCL+) 



GCL / GCL+ (continued) 

 Assignment: 

 x := e  

 assigns value of vectore  to the variable vectorx  

 Sequential composition:  

 C1 ; C2 

 first execute C1 and continue with the execution of C2 if and 
when C1 terminates.  



GCL / GCL+ (continued) 

 Guarded command: 

   if []n
i=1 bi   Ci  fi    

also written as  

   if b1  C1 [] …  [] bn  Cn fi   

 

 abort  if none of the guards bi evaluates to true; 

 otherwise, nondeterministically select one of the bi that 
evaluates to true and execute the corresponding Ci . 



GCL (continued) 

 Iteration: 

 
do []ni =1 bi  Ci  od   % in GCL only 

 

 repeats execution of guarded command Ci  as long as at least 
one of the guards bi  evaluates to true; 

 when none of the guards evaluates to true, the iteration 

terminates (acts like skip). 



GCL+ 

Commands:  

  C ::=  
b x :=e   

| C1 ; C2  

| if []n
i=1 bi  Ci  fi   

| do CB [] (CE ; exit) od 

 

 where Ci , CB , CE  are guarded commands (nesting),  

 (CE ; exit) is terminating branch of the loop. 

Same as in GCL 



GCL+ (continued) 

 Iteration:  

do CB [] (CE ; exit) od   
 

 is the repeated execution of guarded command CB   as long as at 
least one of the guards in CB  evaluates to true  

 or the guard of the finishing command CE  evaluates to true. 

 

 Command C is guarded command, if C has a form: 

 b  v :=e   (atomic) guarded assignment; 

 C1 ; C2    where C1 is a guarded command; 

 if []ni=1 bi  Ci  fi   where every Ci  is a guarded command 



Proof system for GCL+ programs  

 The “assignment” and “skip” axioms of deterministic sequential 
programs are same for GCL+. 

 

Axiom 3 (guard):  

{b  Q} b {Q} 

 Note: guard evaluation is an atomic operation. 
 

Axiom 4 (guarded assignment):  
 {b  Q[e/x]} b  x:=e  {Q} 

 

 Note:  
 Given axiomatic system is not minimal,  

 axioms 1-3 can be deduced from axiom 4. 



GCL+ inference rules (continuation) 

 Weakening, strengthening and sequential composition 
rules apply in GCL+. 

 

Rule 3 (choice): 
 

 

 

 

 

Rule 4 (guarded command): 
 

├ i {1, … , n}: {P  bi } Ci {Q } 

     ├ {P} if ni=1 bi  Ci fi {Q} 

    i  {1, … , n}: {P } Ci {Q }   

    {P } if ni=1 Ci  fi {Q } 



GCL+ inference rules (continuation) 

 Rule 5 (exit-loop): 

 
├ {P } CB {P },   ├ {P }CE {Q }              P- invariant 

  ├ {P } do CB  (CE; exit) od {Q } 

 
 

 

 Rule 6 (do-loop): 

  ├  i {1,…,n}: {P  bi} Ci {P }   

  ├ {P } do n
i=1 bi  Ci od {P  bG} 

where    bG    \/n
i=1 b i  



GSL+ verification example 

Integer division: 
 x – dividend (non-negative integer) 

 y – divisor (positive integer) 

 q – quotient 

 r – reminder 

 

We are looking for a GSL+ program Div, for the specification 

{x  0  y > 0} Div {post_div},  

where 
 

  post_div  x = q  y + r   0  r < y, 

  Div does not change x and y 



GSL+ verification example (continuation) 

Solution 1: 
 Div1    
  q, r := 0, x;  // atomic assignment 

  do 

   y  r     q,r := q+1, r–y 

  od 

 
construct an invariant I by strengthening the post-condition of the loop 

 
 Example:  

 from  (I   (y  r))  post_div,  
 we get  I    x = q  y + r  0  r 



GSL+ verification example (continuation) 

Annotate the program, using the invariant  I   x = q  y + r  0  r 
    

 {x  0  y > 0}  

 q,r  := 0,x; 

 do  {I } 

  y  r     q,r := q+1, r–y 

 od   {I    (y  r)} 

  {x = q  y + r   0  r < y} 
 

Check the partial correctness of given annotations: 
 

1.    (x  0  y > 0)  (x = 0  y + x  0  x) 

   {x  0  y > 0} q, r  := 0, x {I} 
 

2.  (x = q  y + r   0  r   y  r)  (x = (q+1)  y + (r-y)  0  (r -y)) 

   {I  (y  r)} q, r := q +1, r – y {I} 
 

3.   (I  (y  r))  x = q  y + r   0  r < y 



Exercise: GCD 

Show that the following program finds the gcd(x, y) and returns the result in X. 
 

X,Y := x,y 

do 

 X>Y  X:=X-Y  

[] 

 Y>X  Y:=Y-X 

od 

 

Use axioms of gcd: 

- gcd(a,0) = a 

- gcd(a, a) = a 

- a>b  gcd(a, b)= gcd(a-b, b) 

- a<b  gcd(a, b)= gcd(a, b-a) 

 



Exercise 2 

Annotate and verify the program that computes max of x and y 

[ 

x≥y  m:=x  

[] 

y≥x  m:=y  

] 

 


