
Formal Methods Module III:

Verification of parallel programs

Non-deterministic programs

General notes about parallelism

 Parallel programs are compositions of sequential
processes (threads).

 Processes are implemented as (possibly non-
deterministic) sequential programs.

 Two basic inter-process communication mechanisms:
 shared variables;

 message passing.

Principles of verifying parallel
programs

 Observation:

 The behaviour of whole system does not depend only on the
interacting processes alone

 but also on the communication mechanism between the
processes

 and the order (timing) of communication actions.

 Thus, the communication must be made explicit to verify
the program in whole!

Example of necessity to make the
interleavings of processes explicit

 What is the result of executing a simple parallel program?
 Process 1:: X := 0; Y := X + 1;

 Process 2:: X := 1; Y := X + 2;

 Possible interleaving of executions:
 <P1.1, P1.2, P2.1, P2.2>  {X=1, Y=3}

 <P2.1, P2.2, P1.1, P1.2>  {X=0, Y=1}

 <P1.1, P2.1, P2.2, P2.1>  {X=1, Y=2}

 ...

 Due to the interleavings the number of possible final
results explodes

General verification strategy

 We prefer to reuse the Hoare logic for while-programs, i.e. to

prove processes at first locally and thereafter whole system.

 To verify local correctness we need assertions (contracts) about

the local effect of communication (i.e. extra lemmas about it).

 The communication assertions need to be generated and verified:

 the interference test (IFT) if communication via shared variables ;

 the co-operation test (COOP) if communication via message passing.

 Finally, whole system correctness is verified by using local proofs,

communication assertions and parallel composition rule.

Non-deterministic sequential programs

 Languages GCL and GCL+ are

 guarded command languages designed by E. Dijkstra

 they include non-deterministic counterparts of
 if - command and

 while – command

 they differ slightly by their syntactic structure

 GCL is more compact than GCL+.

Syntax of GCL and GCL+

 Pvar – set of program variables:

 x  Pvar

 VAL- set of possible values including natural numbers:

 a VAL

 Arithmetic expressions:
 e ::= a | x | (e1 + e2) | (e1 - e2) | (e1  e2)

 Boolean expressions:
 b ::= e1 = e2 | e1 < e2 | b | b1  b2

GCL / GCL+

 Commands:

 C ::=

 x :=e

 | C1 ; C2

 | if []ni=1 bi  Ci fi

 | do []ni=1 bi  Ci od (different in GCL+)

GCL / GCL+ (continued)

 Assignment:

 x := e

 assigns value of vectore to the variable vectorx

 Sequential composition:

 C1 ; C2

 first execute C1 and continue with the execution of C2 if and
when C1 terminates.

GCL / GCL+ (continued)

 Guarded command:

 if []n
i=1 bi  Ci fi

also written as

 if b1  C1 [] … [] bn  Cn fi

 abort if none of the guards bi evaluates to true;

 otherwise, nondeterministically select one of the bi that
evaluates to true and execute the corresponding Ci .

GCL (continued)

 Iteration:

do []ni =1 bi  Ci od % in GCL only

 repeats execution of guarded command Ci as long as at least
one of the guards bi evaluates to true;

 when none of the guards evaluates to true, the iteration

terminates (acts like skip).

GCL+

Commands:

 C ::=
b x :=e 

| C1 ; C2

| if []n
i=1 bi  Ci fi

| do CB [] (CE ; exit) od

 where Ci , CB , CE are guarded commands (nesting),

 (CE ; exit) is terminating branch of the loop.

Same as in GCL

GCL+ (continued)

 Iteration:

do CB [] (CE ; exit) od

 is the repeated execution of guarded command CB as long as at
least one of the guards in CB evaluates to true

 or the guard of the finishing command CE evaluates to true.

 Command C is guarded command, if C has a form:

 b  v :=e  (atomic) guarded assignment;

 C1 ; C2 where C1 is a guarded command;

 if []ni=1 bi  Ci fi where every Ci is a guarded command

Proof system for GCL+ programs

 The “assignment” and “skip” axioms of deterministic sequential
programs are same for GCL+.

Axiom 3 (guard):

{b  Q} b {Q}

 Note: guard evaluation is an atomic operation.

Axiom 4 (guarded assignment):
 {b  Q[e/x]} b  x:=e  {Q}

 Note:
 Given axiomatic system is not minimal,

 axioms 1-3 can be deduced from axiom 4.

GCL+ inference rules (continuation)

 Weakening, strengthening and sequential composition
rules apply in GCL+.

Rule 3 (choice):

Rule 4 (guarded command):

├ i {1, … , n}: {P  bi } Ci {Q }

 ├ {P} if ni=1 bi  Ci fi {Q}

 i  {1, … , n}: {P } Ci {Q }

 {P } if ni=1 Ci fi {Q }

GCL+ inference rules (continuation)

 Rule 5 (exit-loop):

├ {P } CB {P }, ├ {P }CE {Q } P- invariant

 ├ {P } do CB  (CE; exit) od {Q }

 Rule 6 (do-loop):

 ├ i {1,…,n}: {P  bi} Ci {P }

 ├ {P } do n
i=1 bi  Ci od {P  bG}

where bG  \/n
i=1 b i

GSL+ verification example

Integer division:
 x – dividend (non-negative integer)

 y – divisor (positive integer)

 q – quotient

 r – reminder

We are looking for a GSL+ program Div, for the specification

{x  0  y > 0} Div {post_div},

where

 post_div  x = q  y + r  0  r < y,

 Div does not change x and y

GSL+ verification example (continuation)

Solution 1:
 Div1 
 q, r := 0, x; // atomic assignment

 do

 y  r  q,r := q+1, r–y

 od

construct an invariant I by strengthening the post-condition of the loop

 Example:

 from (I   (y  r))  post_div,
 we get I  x = q  y + r  0  r

GSL+ verification example (continuation)

Annotate the program, using the invariant I  x = q  y + r  0  r

 {x  0  y > 0}

 q,r := 0,x;

 do {I }

 y  r  q,r := q+1, r–y

 od {I   (y  r)}

 {x = q  y + r  0  r < y}

Check the partial correctness of given annotations:

1. (x  0  y > 0)  (x = 0  y + x  0  x)

 {x  0  y > 0} q, r := 0, x {I}

2. (x = q  y + r  0  r  y  r)  (x = (q+1)  y + (r-y)  0  (r -y))

 {I  (y  r)} q, r := q +1, r – y {I}

3. (I  (y  r))  x = q  y + r  0  r < y

Exercise: GCD

Show that the following program finds the gcd(x, y) and returns the result in X.

X,Y := x,y

do

 X>Y  X:=X-Y

[]

 Y>X  Y:=Y-X

od

Use axioms of gcd:

- gcd(a,0) = a

- gcd(a, a) = a

- a>b  gcd(a, b)= gcd(a-b, b)

- a<b  gcd(a, b)= gcd(a, b-a)

Exercise 2

Annotate and verify the program that computes max of x and y

[

x≥y  m:=x

[]

y≥x  m:=y

]

