Data Mining, Lecture 6 Association Patten Mining

S. Nõmm

¹Department of Software Science, Tallinn University of Technology

15.10.2019

What Pattern is?

- Pattern recognition is the discipline whose goal is the classification of objects into a number of classes or categories. [S.Theodoridis]
- What Pattern is? Object? Sub set?

Market basket data

- Most popular example is *Supermarket data*. The goal is to determine *associations* between groups of items bought by customers.
- Discovered sets of items are referred to as *large itemsets*, *frequent itemsets*, *or frequent patterns*.
- Main applications include supermarket data (or shopping basket data in general), text mining, generalization to dependency-oriented data types.
- Within this chapter initial data will be refereed as *transactions* and outputs as *itemsets*.

The Frequent Pattern Mining Model

- Let U be the d dimensional universe of elements (goods offered by the supermarket) and \mathcal{T} is the set of transactions T_1, \ldots, T_n . They said that transaction T_i is drawn on universe of items U.
- T_i may be represented by d-dimensional binary record.
- *itemset* is the set of items. k-itemset is the itemset containing exactly k-items.

The Frequent Pattern Mining Model

Definition

Support The support of an itemset I is defined as the fraction of the transactions in the database $\mathcal{T} = \{T_1, \dots T_n\}$ that contain I as the subset

The support of the itemset I is defined by sup(I). Not to be confused with supremum.

Definition

Frequent Itemset Mining Given a set of trasactions $\mathcal{T} = \{T_1, \dots T_n\}$ where each transaction T_i is drawn on the universe of elements U, determine all itemsets I that occure as a subset of at least a predefined fraction minsup of the transactions in \mathcal{T} .

Predefined fraction minsup is referred as minimal support.

Example: Market basket data set

tid	Set of items	Biary representation
1	{ Bread,Butter, Milk }	110010
2	{ Eggs, Milk, Yogurt }	000111
3	{ Bread, Cheese, Eggs, Milk }	101110
4	{ Eggs, Milk, Yogurt }	000111
5	{ Cheese, Milk, Yogurt }	001011

The Frequent Pattern Mining Mode

Definition

Frequent Itemset Mining: Set-wise Given as set of sets $\mathcal{T} = \{T_1, \dots T_n\}$, where each transaction T_i is drawn on the universe of elements U, determine all sets I that occur as the subset of at least a predefined fractonminsup of the sets in \mathcal{T} .

Support Monotonicity Property The support of every subset J of I is at least equal to the of the support of itemset I.

$$sup(J) \geq sup(I) \quad \forall J \subset I$$

Downward Closure Property Every subset of the frequent itemset is also frequent.

Definition

Maximal Frequent Itemsets A frequent itemset is maximala at a given minimum support level minsup, if it is frequent and no superset of its frequent.

Association Rule Generation Framework

Informal definition If the presence of item set X in the certain transaction(s) leads (implies) presence of the set of items Y in the same transaction(s) then we talk about rule $(X \Rightarrow Y)$.

Definition

Confidence Let X and Y be two sets of items. The confidence of the rule $\operatorname{conf}(X\Rightarrow Y)$ conditional probability of $X\cup Y$ occurring in a transaction, given that the transaction contains X

$$\operatorname{conf}(X \Rightarrow Y) = \frac{\sup(X \cup Y)}{\sup(X)}$$

Definition

Association Rule Let X and Y be two sets of items. Then, the rule $X\Rightarrow Y$ is said to be an association rule at a minimum support of minsup and minimum confidence $\min \operatorname{conf}$ if it satisfies following conditions.

Frequent Itemset Mining Algorithms

- Brute force algorithms.
- The Apriori algorithm.
- Enumeration-Tree Algorithms
- Recursive Suffix-Based Pattern Growth Methods

The Apriori Algorithm

```
begin
  k = 1:
  \mathcal{F}_1 = \{ \text{ All Frequent 1-itemsets } \};
  while \mathcal{F}_k \neq \emptyset
      Generate C_{k+1} by joining itemset-pairs in F_k;
      Prune itemsets from C_{k+1} that violate downward closure;
      Determine \mathcal{F}_{k+1} by support counting on (\mathcal{C}_{k+1},T) and
          retaining from C_{k+1} with support of at least minsup;
      k = k + 1:
      end
  return (\bigcup_{i=1}^k \mathcal{F}_i)
end
```

Alternative Models: Interesting Patterns

- Collective strength
- Statistical Coefficient of Correlation
- χ^2 Measure
- Nonlinear relationships

Collective strength

- An itenset is said to be in violation of transaction, if some of the items are present in the transaction and others are not.
- The *violation rate* v(I) of the itemset I is defined as the fraction of violations of the itemset I over all transactions.
- ullet The collective strength C(I) of the itemset I is defined as follows

$$C(I) = \frac{1 - v(I)}{1 - E[v(I)]} \cdot \frac{R[v(I)]}{v(I)}.$$

• The expected value of the v(I)

$$R[v(I)] = 1 - \prod_{i \in I} p_i - \prod_{i \in I} (1 - p_i)$$

where p_i is the fraction of transactions where the item i occurs.

Collective strength

- Let us consider violation to be an unfavorable event (prospective of establishing a high correlation among items)
- Collective strength may be expressed as follows:

$$C(I) = \frac{\text{Good events}}{E[\text{Good events}]} \frac{E[\text{Bad events}]}{\text{Bad events}]}$$

• This leads us to the idea of *Negative Pattern Mining*. Determine patterns between the items or their absence.

Statistical Coefficient of Correlation

Covariance is the measure of the strength of correlation between two sets of random variables.

$$cov(X,Y) = \sum_{i=1}^{N} \frac{(x_i - \bar{x})(y_i - \bar{y})}{N}$$

Correlation coefficient is standardized

$$\rho_{XY} = \frac{cov(X, Y)}{\sigma_X \sigma_Y}$$

or in another form

$$\rho = \frac{E[XY] - E[X]E[Y]}{\sigma(X)\sigma(Y)}$$

Statistical Coefficient of Correlation

The Pearson correlation coefficient

$$\rho = \frac{E[XY] - E[X]E[Y]}{\sigma(X)\sigma(Y)}$$

May be rewritten in terms of *support* as follows

$$\rho_{ij} = \frac{\sup(\{i,j\}) - \sup(i) \cdot \sup(j)}{\sqrt{\sup(i) \cdot \sup(j) \cdot (1 - \sup(i)) \cdot (1 - \sup(j))}}$$

Should we talk here about regression?

χ^2 measure

 χ^2 test allows to assess if unpaired observations of two categorical variables are independent of each other or not.

$$\chi^2 = \sum_{i=1}^{\nu_1 \cdot \nu_2} \frac{\left(\mathcal{O}_i - E_i\right)^2}{E_i}$$

where ν_1 and ν_2 are the degrees of freedom (number of categories) in the first and in second variables respectively. In the case of binary data $\nu_1 \cdot \nu_2 = 2^{|X|}$.

Nonlinear

•

$$y(x) = a_1 x^n + a_2 x^{n-1} + \dots + a_n x + b$$

•

$$y(x) = f(x)$$

where $f(\cdot)$ is arbitrary nonlinear function