1. Apply the Euclidean algorithm and calculate

$$
\operatorname{gcd}(26,9) \quad \operatorname{gcd}(81,18)
$$

2. Express the following pairs of numbers in the form of Bezout identity

$$
\alpha a+\beta b=\operatorname{gcd}(a, b) .
$$

$(12,18)$
$(26,9)$
3. Find multiplicative modular inverse

$$
\begin{array}{ll}
2^{-1} \text { in } \mathbb{Z}_{7} & 4^{-1} \text { in } \mathbb{Z}_{11} \\
9^{-1} \text { in } \mathbb{Z}_{26} & 2^{-1} \text { in } \mathbb{Z}_{6}
\end{array}
$$

4. Find additive inverse

$$
-3 \text { in } \mathbb{Z}_{5} \quad-4 \text { in } \mathbb{Z}_{10}
$$

5. How many invertible elements?

$$
\begin{array}{lll}
\mathbb{Z}_{6} & \mathbb{Z}_{6}^{\times} & \mathbb{Z}_{11}^{\times}
\end{array}
$$

6. Which elements have multiplicative inverses in \mathbb{Z}_{8} and \mathbb{Z}_{20} ?
7. Write out addition and multiplication tables in \mathbb{Z}_{5} and \mathbb{Z}_{8}.
8. Solve the following linear equations

$$
\begin{aligned}
& x+3 \equiv 2 \quad(\bmod 5) \quad 5+6 \equiv x \quad(\bmod 11) \quad 5 x+2 \equiv 3 \quad(\bmod 7) \\
& 4 x+3 \equiv 11 \quad(\bmod 12) \quad x-4 \equiv 7 \quad(\bmod 12) \quad 4 x \equiv 2 \quad(\bmod 19) \\
& 4 x+3 \equiv 5 \quad(\bmod 13) \quad 2 x+1 \equiv 9 x-4 \quad(\bmod 23) \quad 5 x-1 \equiv 3 x+1 \quad(\bmod 26)
\end{aligned}
$$

9. Solve the systems of linear equations

$$
\begin{array}{ll}
\begin{cases}a+b \equiv 17 & (\bmod 26) \\
2 a+b \equiv 0 & (\bmod 26)\end{cases} & \begin{cases}a+b \equiv 17 & (\bmod 26) \\
4 a+b \equiv 1 & (\bmod 26)\end{cases} \\
\begin{cases}a+b \equiv 17 & (\bmod 26) \\
3 a+b \equiv 0 & (\bmod 26)\end{cases} \\
\begin{cases}8 a+b \equiv 8 & (\bmod 26) \\
5 a+b \equiv 13 & (\bmod 26)\end{cases} & \begin{cases}5 a+b \equiv 21 & (\bmod 26) \\
16 a+b \equiv 10 & (\bmod 26)\end{cases} \\
\hline
\end{array}
$$

