Exercise 1. Factorize $n=33$ given non-trivial square roots of unity 10 and 23.
Exercise 2. Factorize $n=1457$. Suppose you have learned that 1457 is a probable prime to base 187, and a strong pseudoprime to base 187.

Exercise 3. Factorize RSA modulus $n=2491$, given that $e=3$ and $d=1595$.
Exercise 4. Show that textbook RSA is not secure against chosen plaintext attack. The IND-CPA game is defined as follows

1. The challenger generates a new key pair $P K, S K$ and publishes PK to the adversary, the challenger retains $S K$.
2. The adversary may perform a polynomially bounded number of calls to the encryption oracle or other operations.
3. Eventually, the adversary submits two distinct plaintexts M_{0} and M_{1} to the challenger.
4. The chellenger selects a bit $b \in\{0,1\}$ uniformly at random, and sends the challenge ciphertext $C=E\left(P K, M_{b}\right)$ back to the adversary.
5. The adversary is free to perform any number of additional computations.
6. Finally, the adversary outputs a guess for the value b.

A cryptosystem is indistinguishable under chosen plaintext attack (is IND-CPA secure) if every probabilistic polynomial time adversary has only a negligible advantage over random guessing.

Exercise 5. Use homomorphic properties of RSA to show that textbook RSA is not secure against adaptive chosen ciphertext attack (CCA2). The IND-CCA2 game is defined as follows.

1. The challenger generates a new key pair $P K, S K$ and publishes $P K$ to the adversary, the challenger retains $S K$.
2. The adversary may perform any number calls to the encryption or decryption oracles, or other operations.
3. Eventually, the adversary submits two distinct chosen plaintexts M_{0} and M_{1} to the challenger.
4. The challenger selects a bit $b \in\{0,1\}$ uniformly at random, and sends the challenge ciphertext $C=E\left(P K, M_{b}\right)$ back to the adversary.
5. The adversary is free to perform any number of additional computations, calls to the encryption and decryption oracles, but may not submit the challenge ciphertext C to the decryption oracle.
6. Finally, the adversary outputs a guess for the value b.

The plaintext RSA is homomorphic w.r.t. multiplication, meaning that

$$
\left\{\begin{array}{l}
C_{1}=m_{1}^{e} \bmod n \\
C_{2}=m_{2}^{e} \bmod n
\end{array} \Longrightarrow C_{1} \times C_{2}=m_{1}^{e} \cdot m_{2}^{e} \bmod n=\left(m_{1} m_{2}\right)^{e} \bmod n\right.
$$

