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1Department of Computer Science, Tallinn University of Technology

12.02.2015



Organisation clarified
No Plagiarism in any of your tests and final project!!!. You should
cite all the references, including libraries you use to complete your
computational assignments. The student should be able to explain the
meaning of all the computations performed, interpret and present the
results. Grading: Detailed information about the grading may be found in
the first lecture.

I Five (5) home assignments, each gives you max 10 % of the final
grade. If you missed the deadline your grade will be reduced by 10%
for each day you missed.

I Final project gives you max 50% of the final grade. Precise
guidelines will be available from the course page one month before
the examination date. During examination each student will be
given 3 min. to explain the problem, describe chosen methodology,
and present the results. This part will be followed by more detailed
examination of the implementation, student may be asked to change
implementation on the fly and/or run it on the new data set.

I Note, your own implementation graded higher than usage of third
party libraries.



Metric (some times referred as distance function)

Definition
A function d : X × X → R is called metric if for any elements x , y
and z of X the following conditions are satisfied.

1. Non-negativity or separation axiom

d(x , y) ≥ 0

2. Identity of indiscernibles, or coincidence axiom

d(x , y) = 0⇔ x = y

3. Symmetry
d(x , y) = d(y , x)

4. Subadditivity or triangle inequality)

d(x , z) ≤ d(x , y) + d(y , z)



Examples: distances in the Euclidean space 1

Do you remember what Euclidean space is?

I Euclidean distance

d(x , y) =

√√√√ n∑
i=1

(xi − yi )2

I Manhattan distance also referred as city block distance or taxicab
distance

d(x , y) =
n∑

i=1

| xi − yi |

I Chebyshev distance

d(x , y) = lim
k→∞

( n∑
i=1

| xi − yi |k
) 1

k

= max
i

(
| xi − yi |

)



Examples: distances in the Euclidean space 2

Do you remember what Euclidean space is?

I Mahalanobis distance

d(x , y) =
√

(x − y)TS−1(x − y)

where S is the covariance matrix.

I Cosine distance Cosine similarity is the measure of the angle
between two vectors

Sc(x , y) =
x · y
‖x‖‖y‖

Usually used in high dimensional positive spaces, ranges from −1 to
1. Cosine distance is defined as follows

dC (x , y) = 1− Sc(x , y)



Examples: distances in the Euclidean space 3

I Standardized Euclidian distance

I Correlation distance

I Spearman distance

I Hamming distance

I Levenshtein

I Jaccard distance

Please verify, if all the distances mentioned above (starting with
Euclidian ;-)) are metrics?



Data normalization
Normalization - is the process of adjusting values measured on
different scales to a common scale. There are different ways to
normalize the data:

I Standard score Works well for normally distributed data. For
each dimension j compute

x ′i ,j =
xi ,j−µ̄j
σj

.

I Feature scaling used to bring all values into the range [0, 1].

x ′ =
x −min(x)

max(x)−min(x)

may be generalized to bring the values in to and closed
interval [a, b]

x ′ = a +

(
x −min(x)

)
(b − a)

max(x)−min(x)

Note x ′ denotes normalization, not to be confused with derivative.



k-nearest neighbour (k-NN) classification

I Let N be a labeled set of points belonging to c different
classes such that

c∑
i=1

Ni = N

I Classification of a given point x
I Find k - nearest points to the point x .
I Assign x the majority label of neighbouring (k-nearest) points
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(k-NN) classification

I k-NN is a supervised learning method

I it is nonparametric learning method (number of the
parameters grows with the amount of data)

I k-NN is a memory (or instance) -based learning, (algorithm
memorizes the training data).

I k is the hyperparameter.



(k-NN) classification

I For an arbitrary point x the probability to belong to the class
c is given by

p(y = c | x ,D, k) =
1

k

∑
i∈Nk(x,D)

I(yi = c)

here Nk(x ,D) denotes the indexes of the k nearest points to x
in D



Example
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Decision boundary

I Decision boundary or decision surface (the lines between
different colors on the previous slide) is a ”hypersurface” that
partition the vector space in accordance to two classes it
separates.

I Not necessarly surface in the strict sense of this word.
I Decision boundaries characterize the complexity of the model

I Decision boundary is too ”complex” - overfitting.
I Decision boundary is too ”smooth” - underfitting.

I the value k is used to control the complexity of the decision
boundary

I Cross-validation may be used to select value k



Curse of dimensionality

I k-NN-s are best applied to the cases with ”good” distance
metric and enough labeled data

I k-NN-s do not perform well in the case of high dimensional
problems due to the phenomenon refereed as curse of
dimensionality.

I Consider the case when data is distributed uniformly in
d-dimensional unit cube.

I Choose a point x and form a cube around, such that it will
include a fraction f of all available points

I Expected edge length of this cube is

Ed

[
s(f )

]
= f

1
d



Curse of dimensionality

Let f = 0.01 Compute yourself the edge length for the values
d = 1, . . . , 10. Neighbours that are ”far” away may not be good
predictors.
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Misclassification rate
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