Machine Learning, Lecture 7: Logistic regression

S. Nõmm

${ }^{1}$ Department of Computer Science, Tallinn University of Technology

March 20, 2016

Generative approach versus Discriminative approach

- Generative approach - create a model of the form $p(y, \boldsymbol{x})$ and then derive $p(y \mid \boldsymbol{x})$.
- Discriminative approach - fit the model of the form $p(y \mid \boldsymbol{x})$ directly.

Logistic regression

- Linear regression model $p(y \mid \boldsymbol{x} ; \boldsymbol{\theta})=\mathcal{N}(y \mid \mu(\boldsymbol{x}))$
- Replace Gaussian distribution for y with a Bernoulli distribution (more appropriate for the binary response)

$$
p(y \mid \boldsymbol{x}, \boldsymbol{\theta})=\operatorname{Ber}(y \mid \mu(\boldsymbol{x}))
$$

where $\mu(\boldsymbol{x})=\mathbb{E}[y \mid x]=p(y=1 \mid x)$.

- Ensure that $0 \leq \mu(\boldsymbol{x}) \leq 1$ by

$$
\mu(\boldsymbol{x})=\operatorname{sigm}\left(\boldsymbol{\theta}^{T} x\right)
$$

where $\operatorname{sigm}(\eta)$ is the sigmoid or logistic or logit function:

$$
\begin{aligned}
\mu(\boldsymbol{x}) & =\frac{1}{1+e^{-\eta}}=\frac{e^{\eta}}{e^{\eta}+1} \\
p(y \mid \boldsymbol{x}, \boldsymbol{\theta}) & =\operatorname{Ber}\left(y \mid \operatorname{sigm}\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)\right)
\end{aligned}
$$

Some important properties

- For the logistic function

$$
\begin{gathered}
g(\eta)=\frac{1}{1+e^{-\eta}} \\
g(\eta)=0.5 \quad \text { if } \quad \eta=0 \\
g(\eta)>0.5 \quad \text { if } \quad \eta>0 \\
g(\eta)<0.5 \quad \text { if } \quad \eta<0
\end{gathered}
$$

- Derivative of the logistic function

$$
g^{\prime}(\eta)=g(\eta)(1-g(\eta))
$$

Probabilistic interpretation

- Let us compute the probabilities of $y=1$ and $y=0$

$$
\begin{aligned}
& P(y=1 \mid \boldsymbol{x}, \boldsymbol{\theta})=\operatorname{sigm}\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right) \\
& P(y=0 \mid \boldsymbol{x}, \boldsymbol{\theta})=1-\operatorname{sigm}\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)
\end{aligned}
$$

Could you write this statement in a more compact form?

$$
P(y \mid \boldsymbol{x}, \boldsymbol{\theta})=?
$$

- The meaning of $\boldsymbol{\theta}^{T} \boldsymbol{x}$

$$
g\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)=\frac{e^{\boldsymbol{\theta}^{T} \boldsymbol{x}}}{1+e^{\boldsymbol{\theta}^{T} \boldsymbol{x}}}
$$

after the straight but tedious calculations one gets

$$
\boldsymbol{\theta}^{T} \boldsymbol{x}=\log \frac{g\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)}{1-g\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)}
$$

here and after referred as log -odds, probability of event occurring is divided by the probability of not occurring.

Example

Denote x_{i} to be the SAT score of the student i and y_{i} is whether they passed or failed a class.

$$
p\left(y_{i}=1 \mid x_{i} \boldsymbol{w}\right)=\operatorname{sigm}\left(\omega_{0}+\omega_{1} x_{i}\right)
$$

Likelihood

- Likelihood of the parameters (probability of the entire data set)

$$
\mathcal{L}(\boldsymbol{\theta})=P(Y \mid \boldsymbol{X} ; \boldsymbol{\theta})=\prod_{i=1}^{m}\left(\operatorname{sigm}\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)\right)^{y_{i}}\left(1-\operatorname{sigm}\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)\right)^{1-y_{i}}
$$

- We use log- likelihood which leads:

$$
\begin{aligned}
& \ell(\boldsymbol{\theta})=\log \mathcal{L}(\boldsymbol{\theta}) \\
& \quad=\log \prod_{i=1}^{m}\left(\operatorname{sigm}\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)\right)^{y_{i}}\left(1-\operatorname{sigm}\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)\right)^{1-y_{i}} \\
& =\sum_{i=1}^{m}\left(y_{i} \log \operatorname{sigm}\left(\boldsymbol{\theta}^{T} x_{i}\right)+\left(1-y_{i}\right) \log \left(1-\operatorname{sigm}\left(\boldsymbol{\theta}^{T} x_{i}\right)\right)\right)
\end{aligned}
$$

Likelihood maximization

- Gradient descent to minimize the negative log-likelihood. Update step:

$$
\theta_{j}^{k+1}=\theta_{j}^{k}-\alpha \frac{\partial}{\partial \theta_{j}^{k}} \ell(\boldsymbol{\theta})
$$

- Gradient ascent to maximize log likelihood. Update step:

$$
\theta_{j}^{k+1}=\theta_{j}^{k}+\alpha \frac{\partial}{\partial \theta_{j}^{k}} \ell(\boldsymbol{\theta})
$$

- By derivation the log -likelihood one gets the gradient ascend update for the logistic regression:

$$
\theta_{j}^{k+1}=\theta-j^{k}+\alpha \sum_{i=1}^{m}\left(y_{i}-\operatorname{sigm}\left(\boldsymbol{\theta}^{T} x_{i}\right)\right) x_{i, j}
$$

simultaneously for each $\theta_{j}, \quad j=0, \ldots n$.

MLE

- Let us remind that logistic regression corresponds to the following binary classification model

$$
p(y \mid \boldsymbol{x}, \boldsymbol{\theta})=\operatorname{Ber}\left(y \mid \operatorname{sigm}\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)\right)
$$

- Negative log-likelihood for logistic regression

$$
\begin{aligned}
\mathcal{N L L}(\boldsymbol{\theta}) & =-\sum_{i=1}^{N} \log \left[\mu_{i}^{\mathbf{1}\left(y_{i}=1\right)} \times\left(1-\mu_{i}\right)^{\mathbf{1}\left(y_{i}=0\right)}\right] \\
& =-\sum_{i=1}^{N}\left[y_{i} \log \mu_{i}+\left(1-y_{i}\right) \log \left(1-\mu_{i}\right)\right]
\end{aligned}
$$

- Suppose $\tilde{y}_{i} \in\{-1,1\}$ (instead of $y_{i} \in\{0,1\}$), then

$$
p(y=1)=\frac{1}{1+e^{-\boldsymbol{\theta}^{T} \boldsymbol{x}}} ; \quad p(y=-1)=\frac{1}{1+e^{\boldsymbol{\theta}^{T} \boldsymbol{x}}}
$$

leads

$$
\mathcal{N} \mathcal{L} \mathcal{L}(\boldsymbol{\theta})=\sum_{i=1}^{N} \log \left(1+e^{-\tilde{y} \boldsymbol{\theta}^{T} x_{i}}\right)
$$

MLE

$$
\mathcal{N} \mathcal{L} \mathcal{L}(\boldsymbol{\theta})=\sum_{i=1}^{N} \log \left(1+e^{-\tilde{y} \boldsymbol{\theta}^{T} x_{i}}\right)
$$

Gradient and Hessian are given by

$$
\begin{aligned}
g & =\frac{d}{d \boldsymbol{\theta}} f(\boldsymbol{\theta})=\sum_{i}\left(\mu_{i}-y_{i}\right) x_{i}=\boldsymbol{X}^{T}(\boldsymbol{\mu}-y) \\
\boldsymbol{H} & =\frac{d}{d \boldsymbol{\theta}} g(\boldsymbol{\theta})^{T}=\sum_{i} \mu_{i}\left(1-\mu_{i}\right) x_{i} x_{i}^{T}=\boldsymbol{X}^{T} \boldsymbol{S} \boldsymbol{X}
\end{aligned}
$$

where $S=\operatorname{diag}\left(\mu_{i}\right)\left(1-\mu_{i}\right)$.
\boldsymbol{H} is positive define $\Rightarrow \mathcal{N} \mathcal{L} \mathcal{L}$ is convex and therefore has a unique minimum.

Gradient descent / Steepest descend

- Simplest algorithm for unconstrained optimization

$$
\boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\eta_{k} g_{k}
$$

where η_{k} is referred as the step size or learning rate. Main question is how to set the value of η_{k} such, that the method will converge to a local optimum irrespective from the initial point. Such property is called Global convergence

- According to Taylor's theorem:

$$
f(\boldsymbol{\theta}+\eta \mathbf{d}) \approx f\left(\boldsymbol{\theta}+\eta g^{T} \mathbf{d}\right)
$$

where d is the descend direction. If η is small enough then $f(\theta+\eta \mathbf{d})<f(\theta)$.

- If η is too small execution may become to slow and/or minimum may not be necessarily reached.
- Line minimization or Line search, Let us choose η such that it would minimize

$$
\phi(\eta)=f\left(\boldsymbol{\theta}_{k}+\eta \mathrm{d}_{k}\right)
$$

Gradient descent / Steepest descend

- Zig-zaging effect: Exact line search satisfies

$$
\eta_{k}=\arg \min _{\eta>0} \phi(\eta)
$$

Necessary condition for the optimum is $\phi^{\prime}(\eta)=0$. $\phi^{\prime}(\eta)=\mathbf{d}^{T} g$ where $g=f^{\prime}(\boldsymbol{\theta}+\eta \mathbf{d})$. Therefore one either have $g=0$ or $g \perp \mathrm{~d}$.

- To reduce zig-zaging add a momentum term, $\left(\theta_{k}-\theta_{k-1}\right)$:

$$
\boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\eta_{k} \mathrm{~g}_{k}+\mu_{k}\left(\theta_{k}-\theta_{k-1}\right)
$$

where $0 \leq \mu_{k} \leq 1$. This method is frequently referred as heavy ball method

Example Gradient descent

Let us consider convex function $f(\boldsymbol{\theta})=0.5\left(\theta_{1}^{2}-\theta_{2}\right)^{2}+0.5\left(\theta_{1}-1\right)^{2}$ Stat from the point $(0,0)$

Newton's method

Algorithm:

1. Initialize $\boldsymbol{\theta}_{0}$;
2. $k=0$;
3. Until converge do
4. $k=k+1$;
5. Evaluate $g_{k}=\nabla f\left(\boldsymbol{\theta}_{k}\right)$;
6. Evaluate $\boldsymbol{H}_{k}=\nabla^{2} f\left(\boldsymbol{\theta}_{k}\right)$;
7. Solve $\boldsymbol{H}_{k} \mathrm{~d}_{k}=-g_{k}$ for d_{k};
8. Use line search to find step size η_{k} along d_{k}
9. $\boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}+\eta_{k} \mathbf{d}_{k}$
10. end until

Newton's method based techniques

- Iteratively reweighted least squares (IRLS). Applies Newton's algorithm to find MLE for binary logistic regression.
- Quasi- Newton (variable metric) methods. Replaces \boldsymbol{H} by its approximation which is updated on each iteration.

ℓ_{2} regularization

- Let us suppose that the data is linearly separable.
- MLE solution is obtained when $\|\boldsymbol{\theta}\| \rightarrow \infty$
- Logistic sigmoid function approach Heaviside step function and each point will be classified as 0 or 1 with probability 1 . Such solution will not generalize well.
- ℓ_{2} regularization: Objective, gradient and Hessian are given by:-

$$
\begin{aligned}
f^{\prime}(\boldsymbol{\theta}) & =\mathcal{N} \mathcal{L} \mathcal{L}(\boldsymbol{\theta})+\lambda \boldsymbol{\theta}^{T} \boldsymbol{\theta} \\
\mathrm{~g}^{\prime}(\boldsymbol{\theta}) & =\mathrm{g}(\boldsymbol{\theta})+\lambda \boldsymbol{\theta} \\
\boldsymbol{H}^{\prime}(\theta) & =\boldsymbol{H}(\boldsymbol{\theta})+\lambda \boldsymbol{I}
\end{aligned}
$$

Online learning

- Estimates are updated as new observation point(s) arrives (becomes available). On each step the learner must respond with a parameter estimate.
- Regret minimization : The objective used in online learning is the regret, which is the averaged loss incurred.
- Stochastic optimization and risk minimization: The objective is to minimize expected loss

Regret minimization

- The objective used in online learning is the regret, which is the averaged loss incurred.

$$
\operatorname{regret}_{k}=\frac{1}{k} \sum_{t}=1^{k} f\left(\boldsymbol{\theta}_{t}, \boldsymbol{z}_{t}\right)-\min _{\boldsymbol{\theta}^{*}} \in \Theta \frac{1}{k} \sum_{t=1}^{k} f\left(\boldsymbol{\theta}_{*}, \boldsymbol{z}_{t}\right)
$$

- Online gradient descend

$$
\boldsymbol{\theta}_{k+1}=\operatorname{proj}_{\Theta}\left(\boldsymbol{\theta}_{k}-\eta_{k} \mathrm{~g}_{k}\right)
$$

where $\operatorname{proj}_{\nu}(v)=\arg \min _{\boldsymbol{\theta} \in \Theta}\|\boldsymbol{\theta}-v\|_{2}$

Stochastic optimization and risk minimization:

- The objective is to minimize expected loss

$$
f(\boldsymbol{\theta})=\mathbb{E}[f(\boldsymbol{\theta}, z)]
$$

where the expectation is taken over future data.

- Stochastic gradient descent (SGD). Running average:

$$
\overline{\boldsymbol{\theta}}_{k}=\frac{1}{k} \sum_{t=1}^{k} \boldsymbol{\theta}_{t}
$$

which may be implemented recursively as follows:

$$
\overline{\boldsymbol{\theta}}_{k}=\overline{\boldsymbol{\theta}}_{k-1}-\frac{1}{k}\left(\overline{\boldsymbol{\theta}}_{k-1}-\overline{\boldsymbol{\theta}}_{k}\right)
$$

- Step size
- Pre -parameter step size

The LMS algorithm

- Compute MLE for linear regression is an online manner
- The online gradient at iteration k is given by

$$
\mathrm{g}_{k}=x_{i}\left(\boldsymbol{\theta}_{k}^{T} x_{i}-y_{i}\right)
$$

where $i=i(k)$ is the training example used at iteration k

- $\boldsymbol{\theta}$ update

$$
\boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\eta_{k}\left(\hat{y}_{k}-y_{k}\right) x_{k}
$$

The perceptron algorithm

The goal is to fit a binary logistic regression model in an online manner

1. Input: Linearly separable data set $x_{i} \in \mathbb{R}^{D}, \quad y_{i} \in\{-1,1\}$;
2. Initialize $\boldsymbol{\theta}_{0}$;
3. $k=0$;
4. repeat
5. $k=k+1$;
6. $\quad i=k \mid N(k \bmod N)$;
7. if $\hat{y}_{y} \neq y_{i}$ then
8. $\boldsymbol{\theta}_{k}+1=\boldsymbol{\theta}_{k}+y_{i} x_{i} ;$
9. else
10. do nothing
11. end
12. until converged

The perceptron algorithm

- Will converge provided the data is linearly separable.
- First machine learning algorithm ever derived.

