ITC8190
 Mathematics for Computer Science
 Mathematical Induction

Aleksandr Lenin

November 20th, 2018

Suppose we wish to show that for all $n \in \mathbb{N}$:

$$
1+2+\ldots+n=\frac{n(n+1)}{2}
$$

- easy to verify for small values such as $n=1,2,3,4$
- impossible to verify for all $n \in \mathbb{N}$ on a case-by-case basis.

To prove the formula in general, a more generic proof method is required.

This method of proof is known as mathematical induction.

Instead of attempting to verify a statement on a case-by-case basis, a specific proof for the smallest considered integer is given, followed by a generic argument showing that if the statement holds for a given case, it must also hold for the next case in the sequence.
I.e., suppose we want to show that we can climb as high as we like on a ladder.

So show this using mathematical induction, we show that

- We can climb on the first rung (the basis)
- From each rung we can climb on the next one (the step)

Concrete Mathematics, page 3 margin

Suppose we wish to show that for all $n \in \mathbb{N}$:

$$
1+2+\ldots+n=\frac{n(n+1)}{2}
$$

The formula is true for 1 , since $1=\frac{1(1+1)}{2}$. If it holds for some n, we show that it holds for $n+1$.

$$
\begin{aligned}
1+2+\ldots+n+(n+1) & =\frac{n(n+1)}{2}+n+1 \\
& =\frac{n(n+1)+2(n+1)}{2} \\
& =\frac{(n+1)[(n+1)+1]}{2}
\end{aligned}
$$

is exactly the formula for $(n+1)$ th case.

We summarize mathematical induction in the following axiom.

Definition 1 (First Principle of Mathematical Induction)
Let $S(n)$ be a statement about integers for $n \in \mathbb{N}$ and suppose $S\left(n_{0}\right)$ is true for some integer n_{0}. If for all integers $k \geqslant n_{0}: S(k) \Longrightarrow S(k+1)$, then $S(n)$ is true for all integers $n \geqslant n_{0}$.

Let us show that for all $n \geqslant 3$ it holds that $2^{n}>n+4$.
Base The statement is true for $n_{0}=3$, since

$$
8=2^{3}>3+4=7
$$

Step Assume $2^{k}>k+4$ some $k \geqslant 3$. Then for $k+1$

$$
2^{k+1}=2 \cdot 2^{k}>2(k+4)=2 k+8>k+5=(k+1)+4
$$

$$
\text { Therefore, } 2^{k+1}>(k+1)+4
$$

Every integer $10^{n+1}+3 \cdot 10^{n}+5$ is divisible by 9 for $n \in \mathbb{N}$.
The statement is true for $n=1$, since

$$
10^{2}+30+5=135=9 \cdot 15
$$

Suppose $10^{k+1}+3 \cdot 10^{k}+5$ is divisible for some $k \geqslant 1$. Then

$$
\begin{aligned}
10^{k+2}+3 \cdot 10^{k+1}+5 & =10 \cdot 10^{k+1}+10 \cdot 3 \cdot 10^{k}+50-45 \\
& =10 \cdot\left(10^{k+1}+3 \cdot 10^{k}+5\right)-45
\end{aligned}
$$

is divisible by 9 .

We will prove the binomial theorem using mathematical induction.

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

where $a, b \in \mathbb{R}, n \in \mathbb{N}$, and

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

For $n=1$ the binomial theorem is easy to verify.

$$
(a+b)^{1}=\sum_{k=0}^{1}\binom{1}{k} a^{k} b^{1-k}=a^{0} b^{1}+a^{1} b^{0}=a+b
$$

Lemma 1

$$
\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}
$$

Proof.

$$
\begin{aligned}
\binom{n}{k}+\binom{n}{k-1} & =\frac{n!}{k!(n-k)!}+\frac{n!}{(k-1)!(n-k+1)!} \\
& =\frac{(n+1)!}{k!(n-k+1)!}=\binom{n+1}{k} .
\end{aligned}
$$

Assume the binomial theorem holds for $n \geqslant 1$, then

$$
\begin{aligned}
(a+b)^{n+1} & =(a+b)(a+b)^{n}=(a+b)\left(\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}\right) \\
& =\sum_{k=0}^{n}\binom{n}{k} a^{k+1} b^{n-k}+\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n+1-k} \\
& =a^{n+1}+\sum_{k=1}^{n}\binom{n}{k-1} a^{k} b^{n+1-k}+\sum_{k=1}^{n}\binom{n}{k} a^{k} b^{n+1-k}+b^{n+1} \\
& =a^{n+1}+\sum_{k=1}^{n}\left[\binom{n}{k-1}+\binom{n}{k}\right] a^{k} b^{n+1-k}+b^{n+1} \\
& =a^{n+1}+\sum_{k=0}^{n}\binom{n+1}{k} a^{k} b^{n+1-k}=\sum_{k=0}^{n+1}\binom{n+1}{k} a^{k} b^{n+1-k}
\end{aligned}
$$

Definition 2 (Second Principle of Mathematical Induction)

Let $S(n)$ be a statement about integers for $n \in \mathbb{N}$, and suppose $S\left(n_{0}\right)$ holds for some integer n_{0}. If for $k \geqslant n_{0}$

$$
S\left(n_{0}\right), S\left(n_{0}+1\right), \ldots, S(k) \Longrightarrow S(k+1),
$$

then $S(n)$ is true for all $n \geqslant n_{0}$.

The Principle of Mathematical Induction is equivalent to the Principle of Well-Ordering.
Definition 3 (Principle of Well-Ordering)
Every non-empty subset of \mathbb{N} has a least element.
The set \mathbb{Z} is not well-ordered, since it does not contain a smallest element.

Lemma 2
The Principle of Mathematical Induction implies that 0 is the least natural number.

Proof.
Let $S=\{n \in \mathbb{N}: n \geqslant 0\}$. Then $0 \in S$. Now assume that $n \in S$, and $n \geqslant 0$. Since $n+1 \geqslant 0$, then $n+1 \in S$. Hence, by induction, every natural number is greater than or equal to 0 .

Theorem 1

The Principle of Mathematical Induction implies that the natural numbers are well ordered.

Proof.
We must show that if $S \subseteq \mathbb{N}$ and $S \neq \emptyset$, then S contains a smallest element. If $0 \in S$, then the theorem is true by Lemma 2. Assume that if $k \in S$ with $0 \leqslant k \leqslant n$, then S contains a smallest element. We will show that if $k \in S$ with $0 \leqslant k \leqslant n+1$, then S has a smallest element. If S does not contain an integer less than $n+1$, then $n+1$ is the smallest integer in S. Otherwise, since S is non-empty, S must contain an integer less than or equal to n. In this case, by induction, S contains a smallest integer.

Induction can also be useful in formulating definitions. For instance, there are two ways to define the factorial of a positive integer n.

- The explicit definition: $n!=2 \cdot 3 \cdots(n-1) \cdot n$.
- The inductive or recursive definition: 1 ! $=1$ and $n!=n(n-1)$! for $n>1$.

THANK YOU FOR
 YOUR ATTENTION ANY QUESTIONS?

