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Program synthesis

Program Synthesis is the task of
discovering an executable program
from user intent expressed in the form
of some constraints



Challenge of synthesis

Establishing a proper synergy between
the human and the synthesizer is
fundamental to the success of
synthesis.



Domain specific synthesis

• Domain specific systems take the 
human insight and build it directly 
into the synthesizer

– AutoBayes - data analysis programs 
from statistical models

– FFTW - produces fast Fourier transforms 
optimized for specic architectures



Domain specific synthesis

• Generate implementations that often 
out-perform hand-written code

• Very specific to a field and rely on 
domain specific knowledge



Deductive approach

• Synthesis systems which allow the
user to provide insight directly into
the synthesizer

• Program can be extracted from a 
constructive proof of the satisfiability
of a specification

– KIDS, NuPRL



Deductive approach

• In the hands of experts, these 
systems are extremely powerful 
(correct implementation)

• Demands a high level of expertise.



Sketching

A form of synthesis that uses partial
programs as a communication device
between the programmer and the
synthesizer

– focus the synthesizer on low-level
details, leaving control of the high-level
strategy in the hands of the
programmer



Program synthesis

Find a program P that meets a spec 

𝜙(input, output):

∃𝑃∀𝑥.𝜙(𝑥,𝑃(𝑥))



List example

list reverse(list l){

if( isEmpty(l) ){

return l;

}else{

node n = popHead(l);

return append( reverse(l) , n );

}

}



List example

list reverseEfficient(list l){

list nl = new list();

while(□) {□}

}



List example

The condition for the loop must be a 
pointer comparison involving some of 
the memory locations reachable from l 
and nl

#define LOC {| (l | nl).(head | tail)(.next)? | null |}

#define COMP {| LOC ( == | != ) LOC |}



List example

list reverseEfficient(list l){

#define LOC {| (l | nl).(head | tail)(.next)? | null |}

#define COMP {| LOC ( == | != ) LOC |}

list nl = new list();

while( COMP ){□ }

}



List example

• A sequence of assignments to some 
of the available pointers

• Guard assignments with some 
condition

• Temporary variable is required

• Use a different iteration condition for 
the first iteration



List example

#define LOC2 {| LOC | tmp |}
#define LHS {| (l | nl).(head)(.next)? | nl.tail | tmp |}

list reverseEfficient(list l){
list nl = new list();
node tmp = null;
bit c = COMP;
while(c){

if( COMP ){ LHS = LOC2; }
if( COMP ){ LHS = LOC2; }
if( COMP ){ LHS = LOC2; }
if( COMP ){ LHS = LOC2; }
if( COMP ){ LHS = LOC2; }
c = COMP;

}
}



Program synthesis

Find a program P that meets a spec 

𝜙(input, output):

∃𝑃∀𝑥.𝜙(𝑥,𝑃(𝑥))



List example

main(bit[N] elems, int n){

if( n < N){

list l1 = populate(elems, n);

list l2 = populate(elems, n);

l1 = reverse(l1);

l2 = reverseEfficient(l2);

assert compare( l1, l2) ;

}

}



Program and Formula

program:  f(x) { return x + x }  

formula:  𝑆𝑓(𝑥,𝑦) : 𝑦 = 𝑥 +𝑥



Program and formula

Solver as an interpreter: given x, evaluate 
f(x)  

𝑆(𝑥,𝑦) ∧𝑥 = 3             solve for 𝑦 𝒚 ↦ 𝟔

Solver as a execution inverter: given f(x), 
find x  

𝑆(𝑥,𝑦) ∧𝑦 = 6            solve for 𝑥 𝒙 ↦ 𝟑



Triangle example

Refer to solution of the Triangle example in Moodle.



Verification
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