
Program synthesis

Tallinn University of
Technology

Program synthesis

Program Synthesis is the task of
discovering an executable program
from user intent expressed in the form
of some constraints

Challenge of synthesis

Establishing a proper synergy between
the human and the synthesizer is
fundamental to the success of
synthesis.

Domain specific synthesis

• Domain specific systems take the
human insight and build it directly
into the synthesizer

– AutoBayes - data analysis programs
from statistical models

– FFTW - produces fast Fourier transforms
optimized for specic architectures

Domain specific synthesis

• Generate implementations that often
out-perform hand-written code

• Very specific to a field and rely on
domain specific knowledge

Deductive approach

• Synthesis systems which allow the
user to provide insight directly into
the synthesizer

• Program can be extracted from a
constructive proof of the satisfiability
of a specification

– KIDS, NuPRL

Deductive approach

• In the hands of experts, these
systems are extremely powerful
(correct implementation)

• Demands a high level of expertise.

Sketching

A form of synthesis that uses partial
programs as a communication device
between the programmer and the
synthesizer

– focus the synthesizer on low-level
details, leaving control of the high-level
strategy in the hands of the
programmer

Program synthesis

Find a program P that meets a spec

𝜙(input, output):

∃𝑃∀𝑥.𝜙(𝑥,𝑃(𝑥))

List example

list reverse(list l){

if(isEmpty(l)){

return l;

}else{

node n = popHead(l);

return append(reverse(l) , n);

}

}

List example

list reverseEfficient(list l){

list nl = new list();

while(□) {□}

}

List example

The condition for the loop must be a
pointer comparison involving some of
the memory locations reachable from l
and nl

#define LOC {| (l | nl).(head | tail)(.next)? | null |}

#define COMP {| LOC (== | !=) LOC |}

List example

list reverseEfficient(list l){

#define LOC {| (l | nl).(head | tail)(.next)? | null |}

#define COMP {| LOC (== | !=) LOC |}

list nl = new list();

while(COMP){□ }

}

List example

• A sequence of assignments to some
of the available pointers

• Guard assignments with some
condition

• Temporary variable is required

• Use a different iteration condition for
the first iteration

List example

#define LOC2 {| LOC | tmp |}
#define LHS {| (l | nl).(head)(.next)? | nl.tail | tmp |}

list reverseEfficient(list l){
list nl = new list();
node tmp = null;
bit c = COMP;
while(c){

if(COMP){ LHS = LOC2; }
if(COMP){ LHS = LOC2; }
if(COMP){ LHS = LOC2; }
if(COMP){ LHS = LOC2; }
if(COMP){ LHS = LOC2; }
c = COMP;

}
}

Program synthesis

Find a program P that meets a spec

𝜙(input, output):

∃𝑃∀𝑥.𝜙(𝑥,𝑃(𝑥))

List example

main(bit[N] elems, int n){

if(n < N){

list l1 = populate(elems, n);

list l2 = populate(elems, n);

l1 = reverse(l1);

l2 = reverseEfficient(l2);

assert compare(l1, l2) ;

}

}

Program and Formula

program: f(x) { return x + x }

formula: 𝑆𝑓(𝑥,𝑦) : 𝑦 = 𝑥 +𝑥

Program and formula

Solver as an interpreter: given x, evaluate
f(x)

𝑆(𝑥,𝑦) ∧𝑥 = 3 solve for 𝑦 𝒚 ↦ 𝟔

Solver as a execution inverter: given f(x),
find x

𝑆(𝑥,𝑦) ∧𝑦 = 6 solve for 𝑥 𝒙 ↦ 𝟑

Triangle example

Refer to solution of the Triangle example in Moodle.

Verification

References

Course on program synthesis by Ras Bodik and Emina Torlak -
http://www.cs.berkeley.edu/~bodik/cs294/fa12/Lectures/L2/L
2.pdf

Dimensions in Program Synthesis by Sumit Gulwani -
http://research.microsoft.com/en-
us/um/people/sumitg/pubs/ppdp10-synthesis.pdf

Program Synthesis by Sketching by Armando Solar-Lezama -

https://people.csail.mit.edu/asolar/papers/thesis.pdf

http://www.cs.berkeley.edu/~bodik/cs294/fa12/Lectures/L2/L2.pdf
http://research.microsoft.com/en-us/um/people/sumitg/pubs/ppdp10-synthesis.pdf
https://people.csail.mit.edu/asolar/papers/thesis.pdf

