ITC8190
 Mathematics for Computer Science Sets

Aleksandr Lenin

September 11th, 2018

A set is a collection of objects defined in a manner that allows to determine for any given object x whether or not x belongs to the set.

$$
\begin{aligned}
X & =\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \\
X & =\{x: x \text { satisfies } \mathcal{P}\} \\
\mathbb{N} & =\{x: x \text { is a natural number }\}=\{1,2,3, \ldots\} \\
\mathbb{Z} & =\{x: x \text { is an integer }\}=\{\ldots,-2,-1,0,1,2, \ldots\} \\
\mathbb{Q} & =\{x: x \text { is a rational number }\} \\
\mathbb{R} & =\{x: x \text { is a real number }\} \\
\mathbb{C} & =\{x: x \text { is a complex number }\}
\end{aligned}
$$

Some examples:
The set of even numbers:

$$
A=\{x \in \mathbb{Z}: 2 \mid x\}
$$

The set of odd numbers:

$$
A=\{x \in \mathbb{Z}: 2 \nmid x\}
$$

The set of prime numbers:

$$
A=\{x \in \mathbb{N}: \forall y \in \mathbb{N}, y \neq 1, y \neq x: y \nmid x\}
$$

The set of integers between 0 and 100 (inclusive):

$$
A=\{x \in \mathbb{Z}: 0 \leqslant x \leqslant 100\}
$$

The set of integers that are multiples of 5 :

$$
A=\{x \in \mathbb{Z}: 5 \mid x\}
$$

The set of complex numbers with absolute value 1 . The absolute value of $a+b i \in \mathbb{C}$ is $|a+b i|=\sqrt{a^{2}+b^{2}}$.

$$
A=\left\{a+b i \in \mathbb{C}: a^{2}+b^{2}=1\right\}
$$

Set A is a subset of a set B (written as $A \subseteq B$) if membership in set A implies membership in set B.

$$
A \subseteq B \Longleftrightarrow a \in A \Longrightarrow a \in B
$$

Sets A and B are equal if every set is a subset of the other.

$$
A=B \Longleftrightarrow A \subseteq B \wedge B \subseteq A
$$

Set A is a proper subset of a set $B($ written as $A \subset B)$ if A is a subset of B, and A is not equal to B.

$$
A \subset B \Longleftrightarrow A \subseteq B \wedge A \neq B .
$$

Some examples:

$$
\{4,5,8\} \subset\{2,3,4,5,6,7,8,9\}
$$

$$
\{4,7,9\} \nsubseteq \quad\{2,4,5,8,9\}
$$

$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

Let $A=\{1,2,3\}$ and $B=\{1,2,3,4,5\}$. Show that A is a proper subset of B.

By definition of a proper subset:

$$
A \subset B \Longleftrightarrow A \subseteq B \wedge A \neq B
$$

Indeed, $A \subseteq B$, since

$$
\forall a \in A: a \in B
$$

To show that $A \neq B$, we show that there exists $5 \in B$, but $5 \notin A$, and so

$$
B \nsubseteq A \Longrightarrow B \neq A
$$

Therefore, $A \subset B$.

An empty set is a set for which

$$
\forall x: x \notin \emptyset .
$$

Union of sets A and B

$$
A \cup B=\{x: x \in A \vee x \in B\}
$$

Intersection of sets A and B

$$
A \cap B=\{x: x \in A \wedge x \in B\} .
$$

The sets A and B are disjoint if

$$
A \cap B=\emptyset .
$$

Some examples:

$$
\{1,2,3\} \cap\{4,5,6\}=\emptyset
$$

$$
\begin{aligned}
& A=\{x \in \mathbb{Z}: x>2\} \quad B=\{x \in \mathbb{Z}: x \text { is prime }\} \\
& C=\{x \in \mathbb{Z}: x \text { is even }\} \quad A \cap B \cap C=\emptyset
\end{aligned}
$$

Let us show that the sets of even and odd numbers are disjoint.

By definition, the two sets are disjoint if their intersection is an empty set.

Let $A=\{x \in \mathbb{Z}: 2 \mid x\}$ and $B=\{x \in \mathbb{Z}: 2 \nmid x\}$.
We need to show that $A \cap B=\emptyset$.

$$
\begin{aligned}
A \cap B & \Longrightarrow\{x \in A \wedge x \in B\} \\
& \Longrightarrow\{x \in \mathbb{Z} \wedge 2 \mid x \wedge 2 \nmid x\} \\
& \Longrightarrow \emptyset
\end{aligned}
$$

Let

$$
\begin{aligned}
& A=\{x \in \mathbb{Z}: 2 \mid x\} \\
& B=\{x \in \mathbb{Z}: 2 \nmid x\}
\end{aligned}
$$

What is the set $A \cup B$?
$A \cup B=\mathbb{Z}$, since

$$
\begin{aligned}
A \cup B & \Longrightarrow\{x \in A \vee x \in B\} \\
& \Longrightarrow\{(x \in \mathbb{Z} \wedge 2 \mid x) \vee(x \in \mathbb{Z} \wedge 2 \nmid x)\} \\
& \Longrightarrow\{x \in \mathbb{Z} \wedge(2 \mid x \vee 2 \nmid x)\} \\
& \Longrightarrow\{x \in \mathbb{Z}\}=\mathbb{Z}
\end{aligned}
$$

Let U be the universal set. The complement of a set A is the set

$$
A^{\prime}=\{x \in U: x \notin A\}
$$

The difference of the sets A and B is the set

$$
A \backslash B=A \cap B^{\prime}=\{x \in A: x \notin B\}
$$

Some examples:

$$
\begin{aligned}
\{1,2,3\} \backslash\{4,5\} & =\{1,2,3\} \\
\{1,2,3\} \backslash\{2,3,5\} & =\{1\} \\
\{1,2,3,4\} \backslash \emptyset & =\{1,2,3,4\} \\
\mathbb{Z} \backslash\{0\} & =\{\ldots,-2,-1,1,2, \ldots\} \\
\mathbb{Z} \backslash \mathbb{N} & =\{\ldots,-3,-2,-1,0\} \\
\mathbb{N} \backslash \mathbb{N} & =\emptyset
\end{aligned}
$$

The Cartesian product of sets A and B is the set of ordered pairs

$$
A \times B=\{(a, b): a \in A \wedge b \in B\}
$$

Let $A=\{x, y\}, B=\{1,2,3\}$. Then

$$
\begin{aligned}
A \times B & =\{(x, 1),(x, 2),(x, 3),(y, 1),(y, 2),(y, 3)\} \\
B \times A & =\{(1, x),(2, x),(3, x),(1, y),(2, y),(3, y)\}
\end{aligned}
$$

Observe that $A \times B \neq B \times A$.
The Cartesian product of a set with itself is often denoted by

$$
\begin{aligned}
& \mathbb{R}^{3}=\mathbb{R} \times \mathbb{R} \times \mathbb{R} \\
& \mathbb{Z}^{n}=\underbrace{\mathbb{Z} \times \ldots \times \mathbb{Z}}_{n \text { times }}
\end{aligned}
$$

THANK YOU FOR
 YOUR ATTENTION ANY QUESTIONS?

