Beyond Classical Search

Juhan Ernits Department of Computer Science Tallinn University of Technology Juhan.ernits@ttu.ee 2015

Local search algorithms and optimization

Systematic search algorithms

- to find (or given) the goal and to find the path to that goal
- Local search algorithms
 - □ the path to the goal is irrelevant, e.g., *n*-queens problem
 - state space = set of "complete" configurations
 - keep a single "current" state and try to improve it, e.g., move to its neighbors
 - Key advantages:
 - use very little (constant) memory
 - find reasonable solutions in large or infinite (continuous) state spaces
 - (pure) Optimization problem:
 - to find the best state (optimal configuration) based on an objective function, e.g. reproductive fitness – Darwinian, no goal test and path cost

Local search – example

Put n queens on an $n\times n$ board with no two queens on the same row, column, or diagonal

Move a queen to reduce number of conflicts

Local search – state space landscape

- □ A complete local search algorithm finds a solution if one exists
- A optimal algorithm finds a global minimum or maximum

Hill-climbing search

- moves in the direction of increasing value until a "peak"
 - current node data structure only records the state and its objective function
 - neither remember the history nor look beyond the immediate neighbors
 - like climbing Mount Everest in thick fog with amnesia

Hill-climbing search

- moves in the direction of increasing value until a "peak"
 - current node data structure only records the state and its objective function
 - neither remember the history nor look beyond the immediate neighbors
 - like climbing Mount Everest in thick fog with amnesia

Hill-climbing search - example

complete-state formulation for 8-queens

- successor function returns all possible states generated by moving a single queen to another square in the same column (8 x 7 = 56 successors for each state)
- the heuristic cost function h is the number of pairs of queens that are attacking each other

best moves reduce h = 17 to h = 12

local minimum with h = 1

Hill-climbing search – greedy local search

- Hill climbing, the greedy local search, often gets stuck
 - Local maxima: a peak that is higher than each of its neighboring states, but lower than the global maximum
 - **Ridges**: a sequence of local maxima that is difficult to navigate

- Plateau: a flat area of the state space landscape
 - a flat local maximum: no uphill exit exists
 - a shoulder: possible to make progress
- □ can only solve 14% of 8-queen instance but fast (4 steps to S and 3 to F)

Hill-climbing search – improvement

- Allows sideways move: with hope that the plateau is a shoulder
 - could stuck in an infinite loop when it reaches a flat local maximum
 - limits the number of consecutive sideways moves
 - can solve 94% of 8-queen instances but slow (21 steps to S and 64 to F)
- Variations
 - stochastic hill climbing
 - chooses at random; probability of selection depends on the steepness
 - first choice hill climbing
 - randomly generates successors to find a better one
 - All the hill climbing algorithms discussed so far are incomplete
 - fail to find a goal when one exists because they get stuck on local maxima
 - Random-restart hill climbing
 - conducts a series of hill-climbing searches; randomly generated initial states
 - □ Have to give up the global optimality
 - landscape consists of a large amount of porcupines on a flat floor
 - NP-hard problems

Simulated annealing search

- combine hill climbing (efficiency) with random walk (completeness)
- annealing: harden metals by heating metals to a high temperature and gradually cooling them
- getting a ping-pong ball into the deepest crevice in a humpy surface
 - shake the surface to get the ball out of the local minima
 - not too hard to dislodge it from the global minimum

□ simulated annealing:

- start by shaking hard (at a high temperature) and then gradually reduce the intensity of the shaking (lower the temperature)
- escape the local minima by allowing some "bad" moves
- but gradually reduce their size and frequency

Simulated annealing search - Implementation

- Always accept the good moves $\Delta E > 0$
- The probability to accept a bad move
 - decreases exponentially with the "badness" of the move $\Delta E < 0$
 - decreases exponentially with the "temperature" T (decreasing)
- finds a global optimum with probability approaching 1 if the schedule lowers T slowly enough

Simulated annealing search - Implementation

```
def simulated_annealing(problem, schedule=exp_schedule()):
"[Fig. 4.5]"
current = Node(problem.initial)
for t in xrange(sys.maxint):
    T = schedule(t)|
    if T == 0:
        return current
    neighbors = current.expand(problem)
    if not neighbors:
        return current
    next = random.choice(neighbors)
    delta_e = problem.value(next.state) - problem.value(current.state)
    if delta_e > 0 or probability(math.exp(delta_e/T)):
        current = next
```

- Always accept the good moves $\Delta E > 0$
- The probability to accept a bad move
 - decreases exponentially with the "badness" of the move $\Delta E < 0$
 - decreases exponentially with the "temperature" T (decreasing)
- finds a global optimum with probability approaching 1 if the schedule lowers T slowly enough

Local beam search

□ Local beam search: keeps track of *k* states rather than just one

- generates all the successors of all k states
- selects the k best successors from the complete list and repeats
- quickly abandons unfruitful searches and moves to the space where the most progress is being made
 - "Come over here, the grass is greener!"
- lack of diversity among the k states
- stochastic beam search: chooses k successors at random, with the probability of choosing a given successor having an increasing value
- natural selection: the successors (offspring) if a state (organism) populate the next generation according to is value (fitness).

Search with nondeterministic actions

Sometimes the vacuum cleaner also cleans the neighbouring cell, sometimes releases dirt to a clean cell.

AND-OR trees

Depth first AND-OR tree search

function AND-OR-GRAPH-SEARCH(*problem*) **returns** *a conditional plan*, *or failure* **OR-SEARCH**(*problem*.INITIAL-STATE, *problem*,[])

function OR-SEARCH(*state*, *problem*, *path*) **returns** *a conditional plan*, *or failure* **if** *problem*.GOAL-TEST(*state*) **then return** the empty plan **if** *state* is on *path* **then return** *failure* **for each** *action* **in** *problem*.ACTIONS(*state*) **do** $plan \leftarrow AND-SEARCH(RESULTS(state, action), problem, [state | path])$ **if** $plan \neq failure$ **then return** [*action* | *plan*] **return** *failure*

function AND-SEARCH(states, problem, path) returns a conditional plan, or failure for each s_i in states do $plan_i \leftarrow \text{OR-SEARCH}(s_i, problem, path)$ if $plan_i = failure$ then return failure return [if s_1 then $plan_1$ else if s_2 then $plan_2$ else ... if s_{n-1} then $plan_{n-1}$ else $plan_n$]

Slippery Vacuum World

