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K-means and Gaussians

I In K-means we attach each point to its closest centroid according to
formula:

zi = arg min
k
‖xi − µk‖22

I What we are really computing is:

‖xi − µk‖22 =
d∑

j=1

(xij − µkj)(xij − µkj) = (xi − µk)T (xi − µk)

I Recall the formula for multivariate Gaussian:

P(x|µ,Σ) =
1

(2π)D/2|Σ|1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
I If we assume identity covariance Σ = I then we are really computing

Gaussian probabilities in K-means.
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Multimodal Data

I Gaussian distribution is widely used in modeling, mainly because it
has nice mathematical properties.

I In real life data is rarely Gaussian but several Gaussians might fit data
quite well.
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Gaussian Mixture Model

I Gaussian Mixture Model (GMM) is a linear superposition of several
Gaussians.

I We introduce latent variables that indicate from wich mixture
component each point comes from.

I The work with joint distribution over observed and latent variables is
easier than with marginal distribution over data.
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Gaussian Mixture Model

I There are K Gaussians base or component distributions:

p(xi |µk ,Σk) = N (xi |µk ,Σk)

I and one mixing distribution, also called mixing coefficients:

π :
K∑

k=1

πk = 1

I The probability of a point xi is then:

p(xi |π,µ,Σ) =
K∑

k=1

πkN (xi |µk ,Σk)
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Generative story

I Latent variables zi : zi = k means component k generated point xi .
I Probability of being generated by a component:

p(zi = k|π) = πk

I Probability of a point given we know wich component generated it:

p(xi |zi = k ,µ,Σ) = N (xi |µk ,Σk)

I Joint probability of generating the component and the point from it:

p(xi , zi = k|π,µ,Σ) = p(zi = k |π)P(xi |zi = k ,µ,Σ)

= πkN (xi |µk ,Σk)

I Marginal probability of the point - sum out the components:

p(xi |π,µ,Σ) =
K∑

k=1

πkN (xi |µk ,Σk)
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Inference

I We set up a generative model that can be used to generate data.

I But we observe only data.

I We need to learn model parameters - this is also called inference.

I Generation proceeds from parameters to data.

I Inference proceeds from data to parameters.
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Estimating the parameters for GMM

I We need to estimate: π, µk, Σk , k = 1 . . .K

I The log-likelihood of GMM is:

log p(X|π,µ,Σ) =
n∑

i=1

log

(
K∑

k=1

πkN (xi |µk ,Σk)

)

I There are several difficulties in applying maximum likelihood
framework directly to GMM:

I Singularity: Fitting a component mean exactly on a data point leads
likelihood to infinity.

I Identifiability: K -component mixture has K ! equivalent solutions.
I There is a summation inside the logarithm and thus setting derivatives

of log-likelihood to zero will no longer give a closed form solution.
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Iterative approach

I If we would know the component parameters and mixing proportions
then we could compute the probability that the component k is
responsible for the i-th point: p(zi = k |xi ,π,µ,Σ).

I If we would know the responsibilities then we could compute the
estimates for mixing coefficients πk .

I If we would know the responsibilities and mixing coefficients then we
could compute the estimates for component means and variances µk

and Σk .
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Expectation-Maximization

I The described iterative algorithm is often used for estimating the
parameters of the models with latent variables.

I The general algorithm is called expectation-maximization and
consists of two steps:

I Expectation (E) step: compute the expected values for latent
variables given some estimates for the parameters.

I Maximization (M) step: maximize the parameters given the values of
latent variables.

I It can be shown that EM algorithm monotonically increases the log
likelihood of the observed data.
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EM more formally

I Define complete data log likelihood:

Lc(θ) =
n∑

i=1

log p(xi , zi |θ

I This cannot be computed as the latent variables zi are unknown.

I Define expected complete data log likelihood:

Q(θ,θt−1) = E [Lc(θ)|X,θt−1]

I t is the current iteration number, Q is called auxiliary function.

I E step computes the latent values needed to compute Q(θ,θt−1).

I M step optimizes Q with respect to θ:

θt = arg max
θ

Q(θ,θt−1)
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EM for GMM

I The expected complete data log likelihood is:

Q(θ,θt−1) = E

[∑
i

log p(xi , zi |θ)

]

=
∑
i

E

[
log

[
K∏

k=1

(πkp(xi |θk))I(zi=k)

]]
=
∑
i

∑
k

E [I(zi = k)] log [πkp(xi |θk)]

=
∑
i

∑
k

p(zi = k |xi ,θt−1) log [πkp(xi |θk)]

=
∑
i

∑
k

rik log πk +
∑
i

∑
k

rik log p(xi |θk)

I rik are the responsibilities and their values are latent.
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E step for GMM

I We have to compute the values for the latent quantities in Q(θ,θt−1)

I Compute the rseponsibilities rik for each i and k :

rik =
πkp(xi |θt−1

k )∑
k ′ πk ′p(xi |θt−1

k ′ )

I Basically we compute the probability of point xi being generated by a
component and then normalize it with respect to all components.
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M step for GMM
I Optimize Q with respect to π, µk and Σk .
I If rk =

∑
i rik is the weighted number of points assigned to cluster k :

πk =
rk
n

I For µk and Σk look only at the parts in Q that depend on them:

L(µk ,Σk) =
∑
i

∑
k

rik log p(xi |θk)

= −1

2

∑
i

rik

[
log |Σ|k + (xi − µk)TΣ−1

k (xi − µk)
]

I Taking the derivatives with respect to each of them yields:

µk =

∑
i rikxi
rk

Σk =

∑
i rik(xi − µk)(xi − µk)T

rk
=

∑
i rikxix

T
i

rk
− µkµ

T
k
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K-means and Gaussian Mixture Models

I K-means is essentially a Gaussian mixture model

I The covariances are set to the same symmetric matrix for each cluster:

Σ1 = · · · = ΣK = σ2I

I Mixing proportions are uniform: πk = 1
K

I Thus, only cluster means µk must be estimated
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K-means and Gaussian Mixture Models

I Consider delta-function approximation for responsibilities in E-step:

p(zi = k |xi ,θ) ≈ I(z∗i = k)

z∗i = arg max
k

p(zi = k |xi ,θ)

I As the covariances are spherical and equal this reduces the E step to:

x∗i = arg min
k
‖xi − µk‖22

I As the clustering is hard (due to delta approximation) we only have
to compute regular average for means (instead of weighted average as
in GMM) and the M step is:

µk =
1

nk

∑
i :zi=k

xi
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