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K-means and Gaussians

» In K-means we attach each point to its closest centroid according to
formula:

Zj = arg mkin Hxi - NkH%

» What we are really computing is:

Q

xi = gl =D (x5 = i) (x5 — pag) = (xi — ) T (xi = pa)
Jj=1

» Recall the formula for multivariate Gaussian:
P(X|,T) = —— - exp |2 (x— 1) "= (x — o)
W)= omprgie &P | T T ®

» If we assume identity covariance & = [ then we are really computing
Gaussian probabilities in K-means.
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Multimodal Data

» Gaussian distribution is widely used in modeling, mainly because it
has nice mathematical properties.

» In real life data is rarely Gaussian but several Gaussians might fit data
quite well.
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Gaussian Mixture Model

» Gaussian Mixture Model (GMM) is a linear superposition of several
Gaussians.

» We introduce latent variables that indicate from wich mixture
component each point comes from.

» The work with joint distribution over observed and latent variables is
easier than with marginal distribution over data.

Kairit Sirts () Gaussian Mixture Model, EM algorithm 28.02.2014 4/16



Gaussian Mixture Model

» There are K Gaussians base or component distributions:

p(Xiltg, Ti) = N (xi| ey, Xk)

» and one mixing distribution, also called mixing coefficients:

K
T ZTrkzl
k=1

» The probability of a point x; is then:

K
P(X,‘|7T,[l', z) = E 7-‘-k/\/’(xl-“‘l‘kuZk)
k=1
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Generative story

» Latent variables z;: z; = k means component k generated point x;.

v

Probability of being generated by a component:

p(zi = k|m) = mk

v

Probability of a point given we know wich component generated it:
p(xilzi = k, p, Z) = N (x| e, )
Joint probability of generating the component and the point from it:

p(xi,zi = k|7, u, X) = p(z; = k|m)P(xi|z; = k, p, X)
= N (Xil g, k)

v

v

Marginal probability of the point - sum out the components:

K
p(xilm, g, ) = > mN (xil g, L)
k=1
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Inference

v

We set up a generative model that can be used to generate data.

v

But we observe only data.

v

We need to learn model parameters - this is also called inference.

v

Generation proceeds from parameters to data.

v

Inference proceeds from data to parameters.
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Estimating the parameters for GMM

> We need to estimate: 7, pg, 4, k=1... K
» The log-likelihood of GMM is:

n K
log p(X|m, p, X) = ) _log (Z TN (%i| e ZU)
i=1 k=1

» There are several difficulties in applying maximum likelihood
framework directly to GMM:
» Singularity: Fitting a component mean exactly on a data point leads
likelihood to infinity.
> Identifiability: K-component mixture has K! equivalent solutions.
» There is a summation inside the logarithm and thus setting derivatives
of log-likelihood to zero will no longer give a closed form solution.
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Iterative approach

» If we would know the component parameters and mixing proportions
then we could compute the probability that the component k is
responsible for the i-th point: p(z; = k|x;, 7, p, X).

» If we would know the responsibilities then we could compute the
estimates for mixing coefficients 7.

> If we would know the responsibilities and mixing coefficients then we
could compute the estimates for component means and variances gt
and ¥ .
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Expectation-Maximization

» The described iterative algorithm is often used for estimating the
parameters of the models with latent variables.

» The general algorithm is called expectation-maximization and
consists of two steps:

» Expectation (E) step: compute the expected values for latent
variables given some estimates for the parameters.

» Maximization (M) step: maximize the parameters given the values of
latent variables.

» It can be shown that EM algorithm monotonically increases the log
likelihood of the observed data.
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EM more formally

» Define complete data log likelihood:
Lc(6) = logp(xi,zil6
i=1
» This cannot be computed as the latent variables z; are unknown.
» Define expected complete data log likelihood:
Q(6,6") = E[Lc(0)X,0°71]

» t is the current iteration number, @ is called auxiliary function.
» E step computes the latent values needed to compute Q(8, Ht_l).

» M step optimizes @ with respect to 0:

0" = arg max Q8,0 1)
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EM for GMM

» The expected complete data log likelihood is:

Q0,6 1 [Z log p(x;, zi|0) ]
= ZE log [H (wkp(x;|0k))]1(z,-—k)”
i k=1
= Z ZE [[(z; = k)] log [mkp(xi|0k)]
= ZZp zi = k|x;, 0" 1) log [mp(xi]6)]
= er,k |Ogﬁk+zzrlk |ng X,‘ek

> rix are the responsibilities and their values are latent.
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E step for GMM

» We have to compute the values for the latent quantities in Q(8,0' 1)

» Compute the rseponsibilities rj, for each i and k:

_ mep(xil0; )

- Zk/ 71'I<'P(Xi|0/t;71)

» Basically we compute the probability of point x; being generated by a
component and then normalize it with respect to all components.

ik
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M step for GMM

» Optimize @ with respect to 7, p, and X.
> If r, = Zl- rik is the weighted number of points assigned to cluster k:
Ik
T = —
n
» For p, and X4 look only at the parts in Q that depend on them:

L(py, Tk) = Z Z rik log p(xi|0x)

=3 Z Fik [Iog ]k 4 (xi — ) TZ (xi — Mk)}

» Taking the derivatives with respect to each of them yields:

i TikXi
Ky = e
5, — 2 k(X — (i — )" X rwxix] -

Ik Ik
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K-means and Gaussian Mixture Models

» K-means is essentially a Gaussian mixture model

The covariances are set to the same symmetric matrix for each cluster:

v

Y= =Yk =02

» Mixing proportions are uniform: 7, = %

v

Thus, only cluster means g, must be estimated
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K-means and Gaussian Mixture Models
» Consider delta-function approximation for responsibilities in E-step:

p(zi = k|x;,0) =~ I(z] = k)

z = argmax p(zi = k|x;, 6)
» As the covariances are spherical and equal this reduces the E step to:
* . 2
Xj = argmin 1xi = pell2
» As the clustering is hard (due to delta approximation) we only have

to compute regular average for means (instead of weighted average as
in GMM) and the M step is:

1
Hg = ’Tk kai

i:zj=

Kairit Sirts () Gaussian Mixture Model, EM algorithm 28.02.2014 16 / 16



