
ITI8610 Software Assurance 2017

2nd part of Lecture on 29/11/2017

Leonidas Tsiopoulos and Jüri Vain

Multi-View Contracts with JML „Specification Cases“, based on
Chapters 7 and 8 of book:

„Deductive Software Verification – The KeY Book“

Multi-View Contracts

• Contracts handle interface properties representing the assumptions (pre-
conditions) and the guarantees (post-conditions) under these
assumptions.

• A complete contract can be a conjunction of multiple viewpoints
(aspects), each covering a specific concern (behavioral, timing, safety,
etc.) of the design and specified by an individual (view) contract.

Multi-View Contracts - JML

• How multi-view contracts can be specified with JML?

• When specifying a method, it is often useful—and sometimes necessary—
to describe the behavior separately for different parts of the prestate/input
space.

• JML allows the formulation of structured specifications.

• The behavior of a method does not need to be formulated as a single
contract, but can be split up into multiple, possibly nested individual
contracts that model different parts of the behavior.

JML Specification Cases

• The structuring mechanism for that is the specification case, each of which
is specific for a particular pre-condition.

• Specification cases are combined by the also keyword.

Specification case example 1 in JML

• Specification of a method adding an integer element to a set:

…
/*@ requires size < limit && !contains(elem); - One case
@ ensures \result == true;

@ ensures contains(elem);

@ ensures (\forall int e; e != elem;

contains(e) <==> \old(contains(e)));

@ ensures size == \old(size) + 1;

Specification case example 1 in JML – Cont.

@ also

@

@ requires size == limit || contains(elem); - The other case
@ ensures \result == false;

@ ensures (\forall int e;

@ contains(e) <==> \old(contains(e)));

@ ensures size == \old(size);

@*/

public boolean add(int elem) {/*...*/}

Specification case example 2 in JML- Functional Behavior Contract

class Example {

/*@ public behavior

@ requires a!= null // Precondition
@ && \invariant_for(this) && to >= from; // Precondition

@ signals (Throwable e) // Functional Postcondition
@ (e instanceof IndexOutOfBoundsException ==>

@ from < 0 || to >= a.length)

@ && (e instanceof Throwable ==> \invariant_for(this))

@ && (e instanceof IndexOutOfBoundsException);

@ ensures a[\result] >= a[from] && \invariant_for(this); // Functional
Postcondition
@ diverges false;

@ assignable \nothing;

Specification case example 2 in JML – Dependency Contract

@ also

@ requires array != null // Common Preconditions to Functional Contract
@ && \invariant_for(this) && to >= from;

@ accessible a[*]; // Condition for Dependency
@*/

/*@ helper */

public int maxIntArray(/*@nullable*/int[] a, int from, int to) {

// ...

}

}

	ITI8610 Software Assurance 2017
	Multi-View Contracts
	Multi-View Contracts - JML
	JML Specification Cases
	Specification case example 1 in JML
	Specification case example 1 in JML – Cont.
	Specification case example 2 in JML- Functional Behavior Contract
	Specification case example 2 in JML – Dependency Contract

