Lecture 3 Topic:

Module I: Model Checking Property specification in Temporal Logic CTL*

> J.Vain 10.02.2022

Brushup: Model Checking

 $M \vDash P$?

Given:

- *M* model
- *P* property to be checked on the model *M*
- ⊨ satisfiability relation ("*M satisfies P"*)

Goal: Check if M satisfies P

If $M \models P$, it is said in logic that M is a model of formula P

Our model is Kripke Structure (KS)

- Formally:
 - KS is tuple (S, S_0, L, R) over a set of atomic propositions (AP) where
 - S set of symbolic states (a symbolic state encodes a set of explicit states)
 - S_0 is an initial state
 - *L* is a labeling function: $S \rightarrow 2^{AP}$
 - *R* is the transition relation: $R \subseteq S \times S$
- KS is a state-transition system that captures:
 - what is true in a state (labeling of the states with APs)
 - what can be viewed as an atomic move (denoted as state transition)
 - the succession of states (paths on the model graph)
- KS is a static representation that can be unfolded to a *tree of execution traces* on which temporal properties are verified.

Representing transition as formula

- In Kripke structure, transition (*s*, *s*') ∈ *R* corresponds to one step of program execution.
- Suppose a program has two steps
 - x := (x+1) mod 3;
 - y := (y+1) mod 3.
- Then
 - $R = \{R_1, R_2\}$
 - R_1 : $(x' = (x+1) \mod 3) \land (y' = y)$
 - $R_2: (y' = (y+1) \mod 3) \land (x' = x)$

Consecutive States

• State space S:

We can restrict our attention to pairs of consecutive states s = (x, y) and s'=(x', y') in the state space $\{0, 1, 2\} \times \{0, 1, 2\}$, i.e.

 $(s, s') \in \{0, 1, 2\} \times \{0, 1, 2\}$

- Question: Can we construct a logic formula that describes the relation between <u>any</u> two consecutive states *s* and *s*'?
- Assume each pair of consecutive states is an instance of R, e.g. in set notation we have $R = \{R_1, R_2\}$ and in logic notation $R \equiv (R_1 \lor R_2)$

Set of transitions is represented by $R_1 \vee R_2$

By connecting pairs of consecutive states we get execution paths of KS

Representing transitions (revisited II)

- In Kripke structure, a transition (*s*, *s*') ∈ *R* corresponds to one step of program execution.
- For instance, if a program *P* has two commands
 - x := (x+1) mod 3;
 - y := (y+1) mod 3;
- then for the whole program we have transition relation R $R \equiv ((x' = x+1 \mod 3) \land y' = y) \lor ((y' = y+1 \mod 3) \land x' = x)$
- (*s*, *s*') that satisfies *R* means that from state *s* we can get to *s*' by some step of execution that satisfies *R*.

A 'giant' R

- Now we can compute *R* for the whole program
 - then we will know whether any of states is one-step reachable from some other
- Convenient, but globally we loose information: e.g., the order in which the statements are executed
- Comment:
 - without ordering, the disjuncts in *R* have <u>not clear precedence</u> <u>information</u>!

Introducing program counter

- In the computer, the order of executing commands is controlled by *program counters*.
- We introduce an auxilliary variable pc (for programm counter), and assume the commands in program are labeled with $l_0, ..., l_n$.
- For instance
 - In the program:
 - 1₀: x := x+1;
 - l₁: y := x+1;
 - 1₂: ...
 - The effect of executing commands is represented in logic:
 - $R_1: x'=x+1 \land y'=y \land pc = l_0 \land pc'=l_1$
 - $R_2: y'= y+1 \land x'=x \land pc = l_1 \land pc'= l_2$

Now we have complete symbolic representation of program execution in our computation model *M*!

Brushup: Model Checking

 $M \vDash P$?

Given:

- *M* model
- *P* property to be checked on the model *M*
- ⊨ satisfiability relation ("*M satisfies P"*)

Goal: Check if *M satisfies P*

If $M \models P$ it is said in logic that M is a model of formula P

We have seen how M is constructed symbolically How to express P in logic?

Temporal logic CTL*

Let's start with semantics

KS and its logic representation provide us static model of program execution

Dynamic model of program execution is unfolding of the static model

2 options of unfolding to define operational semantics:

Branching time: tree structure

Is a formula valid in given node (e.g. in S2), which is the root of a subtree?

Is a formula valid along a given path starting from node S1?

CTL* (Computation Tree Logic)

- CTL* covers both branching time and linear time interpretations
- Syntax:
 - FOL
 - +
 - Temporal Operators
 - X: neXt
 - F: Future (denoted as $\langle \rangle$ in Uppaal)
 - G: Global

(denoted as [] in Uppaal)

- U: Until
- R: Release

CTL* state formulas and path formulas

- State formulas (are interpreted in states)
 - express properties of states
 - use path quantifiers:
 - A for all paths (starting from a state),
 - E for some paths (starting from a state)
- Path formulas (are interpreted on paths)
 - expess properties of paths
 - use state quantifiers:
 - **G** for all states (of the path)
 - **F** for some state (of the path)

State Formulas (1)

- Atomic propositions are state formulas:
 - If $p \in AP$, then p is a state formula
 - Examples: x > 0, odd(y), ...
- Propositional combinations of state formulas:
 - ¬ φ , $\varphi \lor \psi$, $\varphi \land \psi$...
 - Examples:
 - $x > 0 \lor odd(y)$,
 - $req \Rightarrow (AF ack)$ where
 - "A" is a path quantifier
 - "F *ack*" is a path formula
 - "AF *ack*" is a state formula (interpreted in a state)

State Formulas (2)

- Quantifiers A and E make from a path formula a state formula that is interpreted in the scope of A and E.
- E φ , where φ is a formula, which expresses property of a path
 - E means "there exists a path"
 - E φ φ is *true* on some paths starting <u>from this state on</u>.
- A *φ*
 - A means "for all paths"
 - A φ φ is *true* on all paths starting <u>from this state</u>.

Forms of Path Formulas

- A state formula φ
 - $\varphi\,$ is true in the first state of the path that satisfies path formula prefixed by $\varphi\,$
- For path formulas φ and ψ , the path formulas are also:
 - $\neg \varphi, \quad \varphi \lor \psi, \quad \varphi \land \psi$
 - $X \varphi$, $F \varphi$, $G \varphi$, $\varphi U \psi$, $\varphi R \psi$
 - X in the next state
 - *F* eventually
 - G-globally
 - U-until
 - R releases

Path Formulas (I): *Next*-operaator X

 $X \ \varphi$, where φ is a path formula, meaning

• φ is valid in the suffix of this path (path minus the first state)

Path Formulas II: Eventually-operator

 $F \varphi$: φ is valid in some state of this path

Path Formulas (III): Globally-operator

• *G \varphi*

• φ is valid for head and every suffix of this path

Path Formulas IV: Until-operaator (weak)

- $\varphi \cup \psi$ is *true* on the path iff
 - If ψ is *true* in some state of the path
 - *then* in all states before this state φ must be *true*
- Weak until is true also on paths without states where ψ is true
- For strong until the occurence of state where ψ is true is required

 $\rightarrow \phi$ is true

 $-\psi$ is true

 $\neg -\varphi$ and ψ are either *true* or *false*

Path Formulas (V): Release-operator

$\varphi \, \mathsf{R} \psi$

ψ has to be *true* until and including the point where φ becomes *true*; if φ never becomes *true* then ψ must remain *true* forever
1)

Formal semantics of CTL* (1)

- Formal semantics defines the validity of formulas in mathematically rigorous way.
- Notations

⊨ - satisfiability relation between formula and model:

- $M, s \vDash \varphi$ iff φ holds in the state s of model M
- $M, \pi \vDash \varphi$ iff φ holds along the path π in M
- π^i : *i*-th suffix Of π ,
 - e.g. for path $\pi = s_0, s_1, s_2, ..., \qquad \pi^1 = s_1, s_2, ...$

Semantics of CTL* (2)

• Path formulas are interpreted on paths:

- M, $\pi \vDash \varphi$
- $M, \pi \vDash X \varphi$
- $M, \pi \vDash F \varphi$
- $M, \pi \vDash \varphi U \psi$

Semantics of CTL* (3)

• State formulas are interpreted over a set of states (of a path)

- $M, s \vDash p$
- *M*, $s \models \neg \varphi$
- *M*, $s \models E \varphi$
- $M, s \models A \varphi$

CTL is special case of CTL*

- Quantifiers over paths
 - A φ All: φ is true for all paths starting from the current state.
 - E φ Exists: there exists at least one path starting from the current state where φ is true.
- In CTL, path formulas can occur only when paired with ${\bf A}$ or ${\bf E}$, i.e. one state operator followed by a path operator.

if φ and ψ are state formulas, then

- $X \varphi$, (next)
- $F \varphi$, (eventually)
- $G \varphi$, (globally)
- $\varphi U \psi$, (until)
- $\varphi R \psi$ (release)

are path formulas

LTL is special case of CTL

• LTL contains only path formulas

Path formulas:

- If $p \in AP$, then p is a path formula
- If φ and ψ are path formulas, then
 - ¬*\(\phi\)*
 - φ V ψ
 - *φ* Λ *ψ*
 - *X* φ
 - *F \varphi*
 - *G \varphi*
 - φUψ
 - φ**R**ψ

are also path formulas.

CTL vs. CTL*

- CTL*, CTL and LTL have *different expressive powers*:
- Example:
 - In CTL there is no formula equivalent to LTL formula A(FG p).
 - In LTL there is no formula equivalent to CTL formula AG(EF *p*).
 - A(FG p) \science AG(EF p) is a CTL* formula that cannot be expressed neither in CTL nor in LTL.
- We use in our course CTL!

Minimal set of CTL temporal operators

- CTL has some redundancy to make expressions more compact and better readable
- All CTL operators can be expressed using a minimal set of temporal operators {*EU*, *EF*, *EG*} and propositional connectives ¬, ∨
- Following equivalences are used for mapping temporal operators to minimal set of temporal operators {*EU, EF, EG*}:

strong until

- $EF \ \varphi \equiv E \ [true \ U \ \varphi]$ (because $F \ \varphi \equiv [true \ U \ \varphi]$)
- $AX \varphi \equiv \neg EX(\neg \varphi)$
- $AG \ \varphi \equiv \neg EF(\neg \varphi) \equiv \neg E \ [true \ U \neg \varphi]$
- *AF* $\varphi \equiv A$ [*true* $U \varphi$] $\equiv \neg EG \neg \varphi$
- $A[\varphi U\psi] \equiv \neg (E[(\neg \psi) U \neg (\varphi \lor \psi)] \lor EG (\neg \psi))$

Recap

- CTL* is general temporal logic that offers strong expressive power, more than CTL and LTL separately.
- CTL and LTL are practically useful, they are easier to interpret than CTL*
- CTL* helps to understand the relations between LTL and CTL.
- In the next lecture we will show how to check satisfiability of CTL formulas on Kripke structure.