
Worst Practices
in Software Quality

a.k.a How to Deal with Risks

Maili Markvardt

14.11.2019

We don’t make software

• We help developers and customers in creating better
software

• We prefer to be hands-on in development process and
side-by-side with business

• Our area of expertise includes all types of testing, manual
as well as automated, and supporting activities like test
management and training

• In a way, we help mitigating software related risks

SOFTWARE IS ALWAYS

A SOLUTION TO A PROBLEM

NOT A „THING“ IN ITSELF

Risk?

Different meaning for different people and
roles
No universal definition of RISK exists

Three ingredients to make a
„risk“

• However, 3 characteristics are common in all
definitions
– The potential loss must exist

– Uncertainty with respect to the eventual otucome must be
present

– Some choice or decision is required to deal with both –
uncertainty and potential loss

In short ...

• Risk is the possibility of suffering loss*
– You won’t like it happening

– It’s not certainty

– You may avoid or soften it
if you invest into

• *[Dorofee 1996]

Big risk? Small risk?:
Measuring risk

• Probability – how likely it is to happen

• Impact – how hard it hits/measure of loss

• Risk Exposure = Probability * Impact

Examples – probability and
impact

• Always agree on probability and impact measure scale
– Low – Medium – High?
– Trivial - Minor - Medium – Major – Critical – Blocker?

• Whatever scale units you use, units must be
unambiguosly defined
– Low – internal issues/inconveniences/inefficient time usage
– Medium – impacts up to 100 domestic (not business) customers
– High – financial loss or negative correspondence in media

• Scales depend highly on application domain (e-commerce
vs medical systems)

Risk management

• Systematic approach for minimizing exposure to
potential losses

• It provides supporting framework for all activities
starting from
– determining risks

– Prioritizing

– dealing with risks

REQUIREMENT
=

VALUE TO SOME
STAKEHOLDER

Risk & Requrement – a perfect
couple
• Requirements and risks always go together

– If there’s a requirement, something can go wrong (risk)
– If we are afraid of something going wrong, there’s some value

(requirement)

• This coupling can assist you in determining and checking
requirements’ priorities and risks’ impact
– These must be coherent: important requirement = significant

impact

• Hint for self-chek
– Double-check that couples exist

Let’s see example: e-service
performance (1)

• Req: must respond in X seconds with Y concurrent
users

• Business risk: due to slow response times, e-service
is not usable and customer service is overloaded. But
our aim is to reduce the number CC employees.

• Tech (IT) risk: existing servers may not perform as
expected and we may have to re-write the code or
buy additional computing power.

How risks affect software and
services (development)

• All risks have effect to software and service quality
– Customer and user satisfaction

– Efficiency of resource utilisation

– Preventing problems instead of fire-fighting

– Ability to operate in crisis

What do we mean by „absence
quality“?

• Outcome is faulty
– Functionality

– Non-functional characteristics (usability, security, performance)

• Outcome does not meet users’ nor op’s’ expectations

• Documentation is not sufficient

• Difficulties in maintenance and changes

• Project is behind schedule

• Project exceeds budget

• Relationships are ruined

Root causes: idea phase

• Problem to be solved is unclear

• Bad procurement
– From day 1 we are already behind schedule

• Too ambitious shedule

• ROI not analysed

Root causes: Initiation
• Lack of knowledge in application domain

– Important terms, basic businesse processes

– Risks – what is important in this system?

• Bad requirements, lack of „analysis“
– Underestimating the importance of understanding the domain and what we

are doing

– Typical mistakes in RE (unclear, ambiguous requirements)

– Person who is supposed to do analysis is not up to the job (yet)

• Underestimating risks related to team
– Competence, especially non-it members of the team

• Stupid mistakes in the project timeline planning
– Forgetting public holidays and holiday seasons

• Improper development methodology

Root causes: during the project

• Risks and changes
– Change management is missing (scope creep)

– Impact analysis for changes is not conducted

– Risks are not identified nor reviewd

– Specs and agreements not updated

• Processes
– Customer/business is forgotten and allows to be so

– Actual work processes supported by software are forgotten
to be changed

Root causes: Acceptance and
finishing off
• Some requirements will never be tested

– Usually non-functional

• Testing seen as isolated activity from development
process, usually in the end of a phase

• Testing responsibilities not agreed

• Testing (especially acceptance by the customer) not
planned

• Poor support for deployments and other op’s
– Op’s not incuded in project team

– Poor deployment and technical management guides

Conclusion

• The aim is not a risk-free project

• The aim is outcome that balances quality, functionality, budget
and timeline

People

Processes

Tools

Synergy

Murphy never sleeps,
but spares those having

Plan B

Aitäh!

Maili Markvardt
maili@asaquality.ee

