ITC8190
 Mathematics for Computer Science Elementary Probability Theory

Aleksandr Lenin

November 27th, 2018

The following slides were borrowed from a lecture material in cryptography course by prof. Ahto Buldas with his permission.
https://courses.cs.ttu.ee/w/images/c/c7/
ITC8240-Unbreakable-ciphers.pdf
Ω-sample space, that contains all possible outcomes $\omega \in \Omega$.

For example, $\Omega=\{$ heads, tails $\}$ for a coin, and $\Omega=\{1, \ldots, 6\}$ for a die.
Events are subsets $A \subseteq \Omega$.
For a die, the event $\{2,4,6\}$ means that the outcome is even.

An event A happens if $\omega \in A$ for the actual outcome ω.

Empty event \emptyset is called the impossible event (it never happens)
Ω is called the universal event (it always happens)

For every two events A and B we can compute:

Intersection	A and B	$A \cap B=\{\omega \in \Omega: \omega \in A$ and $\omega \in B\}$
Union	A or B	$A \cup B=\{\omega \in \Omega: \omega \in A$ or $\omega \in B\}$
Difference	A but not B	$A \backslash B=\{\omega \in \Omega: \omega \in A$ and $\omega \notin B\}$

Inclusion: Event A implies event A, if $A \subseteq B$, i.e. if $\omega \in A$ always implies $\omega \in B$. If A happens then B happens.

Exclusion: Events A and B are mutually exclusive if $A \cap B=\emptyset$, i.e. A and B cannot simultaneously happen.

Theorem (1)
$A=(A \backslash B) \cup(A \cap B)$

Proof.
We prove (a) $A \subseteq(A \backslash B) \cup(A \cap B)$ and (b) $(A \backslash B) \cup(A \cap B) \subseteq A$
(a) If $\omega \in A$ then either:

- $\omega \in B$, which implies $\omega \in A \cap B$, or
- $\omega \notin B$, which implies $\omega \in A \backslash B$
(b) If $\omega \in(A \backslash B) \cup(A \cap B)$, then either:
- $\omega \in A \backslash B$, which implies $\omega \in A$, or
- $\omega \in A \cap B$, which also implies $\omega \in A$

Theorem (2)
$A \cup B=(A \backslash B) \cup B$
Proof.
We prove (a) $A \cup B \subseteq(A \backslash B) \cup B$ and (b) $(A \backslash B) \cup B \subseteq A \cup B$
(a) If $\omega \in A \cup B$, then either:

- $\omega \in B$ or
- $\omega \notin B$ and $\omega \in A$, which implies $\omega \in A \backslash B$.
(b) If $\omega \in(A \backslash B) \cup B$ then either:
- $\omega \in B$ or
- $\omega \in A \backslash B$ that implies $\omega \in A$.

The set \mathcal{F} of all events we consider must be a sigma-algebra:

- $\Omega \in \mathcal{F}$
- If $A \in \mathcal{F}$, then $\Omega \backslash A \in F$
- If $A_{1}, A_{2}, A_{3}, \ldots \in \mathcal{F}$, then $A_{1} \cup A_{2} \cup A_{3} \cup \ldots \in \mathcal{F}$

If $A \in \mathcal{F}$, then A is said to be a measurable subset.
Example: The set $P(\Omega)$ of all subsets of Ω is a sigma-algebra.
In this class, we mostly assume that $\mathcal{F}=P(\Omega)$.

Probability (measure) is a function $\mathrm{P}: \mathcal{F} \rightarrow \mathbb{R}$ such that:

- PM1: $0 \leq \mathrm{P}[A] \leq 1$ for any event $A \in \mathcal{F}$.
- PM2: $\mathrm{P}[\Omega]=1$
- PM3: If $A_{1}, A_{2}, \ldots \in \mathcal{F}$ are mutually exclusive, then

$$
\mathrm{P}\left[A_{1} \cup A_{2} \cup \ldots\right]=\mathrm{P}\left[A_{1}\right]+\mathrm{P}\left[A_{2}\right]+\ldots
$$

The triple $(\Omega, \mathcal{F}, \mathrm{P})$ is called a probability space.
If \mathcal{F} is the set of all subsets of Ω, we omit \mathcal{F} and say that a probability space is a pair (Ω, P).

Theorem
$\mathrm{P}[\Omega \backslash A]=1-\mathrm{P}[A]$

Proof.
By $P M 2$, we have $\mathrm{P}[\Omega]=1$. As A and $\Omega \backslash A$ are mutually exclusive, and $(\Omega \backslash A) \cup A=\Omega$, by $P M 3$, we have $\mathrm{P}[\Omega \backslash A]+\mathrm{P}[A]=\mathrm{P}[\Omega]=1$ and hence

$$
\mathrm{P}[\Omega \backslash A]=\underbrace{\mathrm{P}[\Omega \backslash A]+\mathrm{P}[A]}_{1}-\mathrm{P}[A]=1-\mathrm{P}[A] .
$$

Theorem
$\mathrm{P}[A]+\mathrm{P}[B]=\mathrm{P}[A \cap B]+\mathrm{P}[A \cup B]$
Proof.
By Thm. 1: $A=(A \backslash B) \cup(A \cap B)$. As $A \backslash B$ and $A \cap B$ are mutually exclusive, by $P M 3$: $\mathrm{P}[A]=\mathrm{P}[A \backslash B]+\mathrm{P}[A \cap B]$. Hence,

$$
\mathrm{P}[A]+\mathrm{P}[B]=\mathrm{P}[A \backslash B]+\mathrm{P}[B]+\mathrm{P}[A \cap B]
$$

By Thm. 2: $A \cup B=(A \backslash B) \cup B$. As $A \backslash B$ and B are mutually exclusive, by PM3: $\mathrm{P}[A \cup B]=\mathrm{P}[A \backslash B]+\mathrm{P}[B]$. Hence,

$$
\mathrm{P}[A]+\mathrm{P}[B]=\underbrace{\mathrm{P}[A \backslash B]+\mathrm{P}[B]}_{\mathrm{P}[A \cup B]}+\mathrm{P}[A \cap B]=\mathrm{P}[A \cup B]+\mathrm{P}[A \cap B] .
$$

Somehow we learn that an event B (with $\mathrm{P}[B] \neq 0$) happens, i.e. $\omega \in B$. Probability space (Ω, P) collapses to a new space $\left(\Omega^{\prime}, \mathrm{P}^{\prime}\right)$, where $\Omega^{\prime}=B$.

Magnify by β

We want that there is β, so that $\mathrm{P}^{\prime}[A]=\beta \cdot \mathrm{P}[A \cap B]$ for any event A. As in the new space, $\mathrm{P}^{\prime}[B]=\mathrm{P}^{\prime}\left[\Omega^{\prime}\right]=1$, we have $\beta=\frac{1}{\mathrm{P}[B \cap B]}=\frac{1}{\mathrm{P}[B]}$, i.e.

$$
\mathrm{P}^{\prime}[A]=\frac{\mathrm{P}[A \cap B]}{\mathrm{P}[B]} .
$$

The probability

$$
\mathrm{P}^{\prime}[A]=\frac{\mathrm{P}[A \cap B]}{\mathrm{P}[B]}
$$

is denoted by $\mathrm{P}[A \mid B]$ and is called the conditional probability of A assuming that B happens, i.e.

$$
\mathrm{P}[A \mid B]=\frac{\mathrm{P}[A \cap B]}{\mathrm{P}[B]}
$$

Corollary (Chain Rule):

$$
\mathrm{P}[A \cap B]=\mathrm{P}[B] \cdot \mathrm{P}[A \mid B]=\mathrm{P}[A] \cdot \mathrm{P}[B \mid A]
$$

Random variable X is any function $X: \Omega \rightarrow R$, where R is called the range of X. We write R_{X} to denote the range of X

For any $x \in R$, we define $X^{-1}(x)$ as the event $\{\omega: X(\omega)=x\}$ and use the notation:

$$
\underset{X}{\mathrm{P}}[x]=\mathrm{P}[X=x]=\mathrm{P}\left[X^{-1}(x)\right] .
$$

In cryptography, we mostly assume that the range R is finite.
Note that if $x \neq x^{\prime}$, then the events $X^{-1}(x)$ and $X^{-1}\left(x^{\prime}\right)$ are mutually exclusive and as $\cup_{x \in R} X^{-1}(x)=\Omega$, we have:

$$
\sum_{x} \underset{X}{\mathrm{P}}[x]=\mathrm{P}\left[\cup_{x \in R} X^{-1}(x)\right]=\mathrm{P}[\Omega]=1
$$

Assume R is finite and $R=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
The sequence of values $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, where $p_{i}=\underset{X}{\mathrm{P}}\left[x_{i}\right]$, is called the probability distribution of X.

Histograms are graphical representations of probability distributions.

Events A and B are said to be independent if $\mathrm{P}[A \cap B]=\mathrm{P}[A] \cdot \mathrm{P}[B]$ If $\mathrm{P}[A] \neq 0 \neq \mathrm{P}[B]$, then independence is equivalent to:

$$
\mathrm{P}[A \mid B]=\mathrm{P}[A] \quad \text { and } \quad \mathrm{P}[B \mid A]=\mathrm{P}[B]
$$

i.e. the probability of A does not change, if we learn that B happened.

We say that X and Y are independent random variables if for every $x \in R_{X}$ and $y \in R_{Y}$:

$$
\begin{aligned}
\mathrm{P}[X=x, Y=y] & =\mathrm{P}\left[X^{-1}(x) \cap Y^{-1}(y)\right]=\mathrm{P}\left[X^{-1}(x)\right] \cdot \mathrm{P}\left[Y^{-1}(y)\right] \\
& =\mathrm{P}[X=x] \cdot \mathrm{P}[Y=y]
\end{aligned}
$$

This means that the probability distribution of X does not change, if we learn the value of Y, and vice versa

By the direct product $X Y$ (or (X, Y)) of random variables X and Y on a probability space (Ω, P) is a random variable defined by

$$
(X Y)(\omega)=(X(\omega), Y(\omega))
$$

Let X be a random variable (with range R) on a probability space (Ω, P). If we take $\Omega^{\prime}=R$ and define a probability function P_{X} on R as follows:

$$
\underset{X}{\mathrm{P}}[A]=\mathrm{P}\left[X^{-1}(A)\right]
$$

where $X^{-1}(A)=\{\omega \in \Omega: X(\omega) \in A\}$, we get a probability space $\left(R, \underset{X}{\mathrm{P}^{\mathrm{P}}}\right)$ that we call a factor space.

To sum up, the chain rule is

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A \mid B] \cdot \operatorname{Pr}[B]=\operatorname{Pr}[B \mid A] \cdot \operatorname{Pr}[A]
$$

If events A and B are independent, then $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$ and $\operatorname{Pr}[B \mid A]=\operatorname{Pr}[B]$, and the chain rule takes the form of

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B]
$$

The probability of the union

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B] .
$$

If events A and B are mutually exclusive, then
$\operatorname{Pr}[A \cap B]=0$ and hence

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]
$$

The chain rule

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A \mid B] \cdot \operatorname{Pr}[B]=\operatorname{Pr}[B \mid A] \cdot \operatorname{Pr}[A]
$$

also provides us with the relationship between conditional probabilities $\operatorname{Pr}[A \mid B]$ and $\operatorname{Pr}[B \mid A]$, namely

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[B \mid A] \cdot \operatorname{Pr}[A]}{\operatorname{Pr}[B]}
$$

where:
$\operatorname{Pr}[A]$ is the prior belief
$\operatorname{Pr}[B \mid A]$ is called the likelihood
$\operatorname{Pr}[B]$ is called evidence
$\operatorname{Pr}[A \mid B]$ is called the posterior
This is known as the Bayes' theorem. It allows to make informed guesses about observations based on prior knowledge or beliefs.

THANK YOU FOR
 YOUR ATTENTION ANY QUESTIONS?

