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Probability Theory

Sample Space and Events

Ω-sample space, that contains all possible outcomes ω ∈ Ω.

For example, Ω = {heads, tails} for a coin, and Ω = {1, . . . , 6} for a die.

Events are subsets A ⊆ Ω.

For a die, the event {2, 4, 6} means that the outcome is even.
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Probability Theory

When do Events Happen?

An event A happens if ω ∈ A for the actual outcome ω.

Empty event ∅ is called the impossible event (it never happens)

Ω is called the universal event (it always happens)
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Probability Theory

Operations with Events

For every two events A and B we can compute:

Intersection A and B A ∩B = {ω ∈ Ω: ω ∈ A and ω ∈ B}
Union A or B A ∪B = {ω ∈ Ω: ω ∈ A or ω ∈ B}
Difference A but not B A\B = {ω ∈ Ω: ω ∈ A and ω 6∈ B}
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Probability Theory

Relations Between Events

Inclusion: Event A implies event A, if A ⊆ B, i.e. if ω ∈ A always implies
ω ∈ B. If A happens then B happens.

Exclusion: Events A and B are mutually exclusive if A ∩B = ∅, i.e. A
and B cannot simultaneously happen.
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Probability Theory

Some Properties

Theorem (1)

A = (A\B) ∪ (A ∩B)

Proof.

We prove (a) A ⊆ (A\B) ∪ (A ∩B) and (b) (A\B) ∪ (A ∩B) ⊆ A

(a) If ω ∈ A then either:

◦ ω ∈ B, which implies ω ∈ A ∩B, or

◦ ω 6∈ B, which implies ω ∈ A\B

(b) If ω ∈ (A\B) ∪ (A ∩B), then either:

◦ ω ∈ A\B, which implies ω ∈ A, or

◦ ω ∈ A ∩B, which also implies ω ∈ A
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Probability Theory

Some Properties

Theorem (2)

A ∪B = (A\B) ∪B

Proof.

We prove (a) A ∪B ⊆ (A\B) ∪B and (b) (A\B) ∪B ⊆ A ∪B

(a) If ω ∈ A ∪B, then either:

◦ ω ∈ B or

◦ ω 6∈ B and ω ∈ A, which implies ω ∈ A\B.

(b) If ω ∈ (A\B) ∪B then either:

◦ ω ∈ B or

◦ ω ∈ A\B that implies ω ∈ A.
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Probability Theory

Event Algebra

The set F of all events we consider must be a sigma-algebra:

Ω ∈ F

If A ∈ F, then Ω\A ∈ F
If A1, A2, A3, . . . ∈ F, then A1 ∪A2 ∪A3 ∪ . . . ∈ F

If A ∈ F, then A is said to be a measurable subset.

Example: The set P (Ω) of all subsets of Ω is a sigma-algebra.

In this class, we mostly assume that F = P (Ω).
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Probability Theory

Probability Measure

Probability (measure) is a function P : F → R such that:

◦ PM1: 0 ≤ P[A] ≤ 1 for any event A ∈ F.

◦ PM2: P[Ω] = 1

◦ PM3: If A1, A2, . . . ∈ F are mutually exclusive, then

P[A1 ∪A2 ∪ . . .] = P[A1] + P[A2] + . . .

The triple (Ω,F,P) is called a probability space.

If F is the set of all subsets of Ω, we omit F and say that a probability
space is a pair (Ω,P).
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Probability Theory

Some Implications

Theorem

P[Ω\A] = 1− P[A]

Proof.

By PM2, we have P[Ω] = 1. As A and Ω\A are mutually exclusive, and
(Ω\A) ∪A = Ω, by PM3, we have P[Ω\A] + P[A] = P[Ω] = 1 and hence

P[Ω\A] = P[Ω\A] + P[A]︸ ︷︷ ︸
1

−P[A] = 1− P[A] .
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Probability Theory

Some Implications

Theorem

P[A] + P[B] = P[A ∩B] + P[A ∪B]

Proof.

By Thm. 1: A = (A\B) ∪ (A ∩B). As A\B and A ∩B are mutually
exclusive, by PM3: P[A] = P[A\B] + P[A ∩B]. Hence,

P[A] + P[B] = P[A\B] + P[B] + P[A ∩B]

By Thm. 2: A ∪B = (A\B) ∪B. As A\B and B are mutually exclusive,
by PM3: P[A ∪B] = P[A\B] + P[B]. Hence,

P[A] + P[B] = P[A\B] + P[B]︸ ︷︷ ︸
P[A∪B]

+ P[A ∩B] = P[A ∪B] + P[A ∩B] .
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Probability Theory

Learning

Somehow we learn that an event B (with P[B] 6= 0) happens, i.e. ω ∈ B.

Probability space (Ω,P) collapses to a new space (Ω′,P′), where Ω′ = B.

Magnify by β

We want that there is β, so that P′[A] = β · P[A ∩B] for any event A.

As in the new space, P′[B] = P′[Ω′] = 1, we have β = 1
P[B∩B] = 1

P[B] , i.e.

P
′[A] =

P[A ∩B]

P[B]
.
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Probability Theory

Conditional Probability

The probability

P
′[A] =

P[A ∩B]

P[B]

is denoted by P[A | B] and is called the conditional probability of A
assuming that B happens, i.e.

P[A | B] =
P[A ∩B]

P[B]

Corollary (Chain Rule):

P[A ∩B] = P[B] · P[A |B] = P[A] · P[B |A]
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Probability Theory

Random Variables

Random variable X is any function X : Ω→ R, where R is called the
range of X. We write RX to denote the range of X

For any x ∈ R, we define X−1(x) as the event {ω : X(ω) = x} and use
the notation:

P
X

[x] = P[X = x] = P[X−1(x)] .
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Probability Theory

Finite Range Random Variables

In cryptography, we mostly assume that the range R is finite.

Note that if x 6= x′, then the events X−1(x) and X−1(x′) are mutually
exclusive and as ∪x∈RX−1(x) = Ω, we have:∑

x

P
X

[x] = P[∪x∈RX−1(x)] = P[Ω] = 1 .
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Probability Theory

Probability Distributions and Histograms

Assume R is finite and R = {x1, x2, . . . , xn}.
The sequence of values (p1, p2, . . . , pn), where pi = P

X
[xi], is called the

probability distribution of X.

Histograms are graphical representations of probability distributions.
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Probability Theory

Independent Events and Random Variables

Events A and B are said to be independent if P[A ∩B] = P[A] · P[B]

If P[A] 6=0 6=P[B], then independence is equivalent to:

P[A | B] = P[A] and P[B | A] = P[B] ,

i.e. the probability of A does not change, if we learn that B happened.

We say that X and Y are independent random variables if for every
x ∈ RX and y ∈ RY :

P[X = x, Y = y] = P[X−1(x) ∩ Y −1(y)] = P[X−1(x)] · P[Y −1(y)]

= P[X = x] · P[Y = y] .

This means that the probability distribution of X does not change, if we
learn the value of Y , and vice versa
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Probability Theory

Direct Product of Random Variables

By the direct product XY (or (X,Y )) of random variables X and Y on a
probability space (Ω,P) is a random variable defined by

(XY )(ω) = (X(ω), Y (ω)) .
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Probability Theory

Factor Space

Let X be a random variable (with range R) on a probability space (Ω,P).

If we take Ω′ = R and define a probability function P
X

on R as follows:

P
X

[A] = P[X−1(A)]

where X−1(A) = {ω ∈ Ω: X(ω) ∈ A}, we get a probability space (R, P
X

)

that we call a factor space.

Ahto Buldas Theory of Unbreakable Ciphers September 25, 2018 19 / 28



To sum up, the chain rule is

Pr[A ∩ B] = Pr[A|B] · Pr[B] = Pr[B|A] · Pr[A] .

If events A and B are independent, then Pr[A|B] = Pr[A]
and Pr[B|A] = Pr[B], and the chain rule takes the form of

Pr[A ∩ B] = Pr[A] · Pr[B] .

The probability of the union

Pr[A ∪ B] = Pr[A] + Pr[B]− Pr[A ∩ B] .

If events A and B are mutually exclusive, then
Pr[A ∩ B] = 0 and hence

Pr[A ∪ B] = Pr[A] + Pr[B] .



The chain rule

Pr[A ∩ B] = Pr[A|B] · Pr[B] = Pr[B|A] · Pr[A] .

also provides us with the relationship between conditional
probabilities Pr[A|B] and Pr[B|A], namely

Pr[A|B] = Pr[B|A] · Pr[A]

Pr[B] ,

where:
Pr[A] is the prior belief
Pr[B|A] is called the likelihood
Pr[B] is called evidence
Pr[A|B] is called the posterior

This is known as the Bayes’ theorem. It allows to make
informed guesses about observations based on prior
knowledge or beliefs.




