Exercise 1. Let $f: X \rightarrow Y$ be a map with $A_{1}, A_{2} \subset X$ and $B_{1}, B_{2} \subset Y$. Show that

$$
f\left(A_{1} \cup A_{2}\right)=f\left(A_{1}\right) \cup f\left(A_{2}\right)
$$

Exercise 2. Let $f: X \rightarrow Y$ be a map with $A_{1}, A_{2} \subset X$ and $B_{1}, B_{2} \subset Y$. Show that

$$
f\left(A_{1} \cap A_{2}\right) \subset f\left(A_{1}\right) \cap f\left(A_{2}\right)
$$

Exercise 3. Let $f: X \rightarrow Y$ be a map with $A_{1}, A_{2} \subset X$ and $B_{1}, B_{2} \subset Y$. Show that

$$
f^{-1}\left(B_{1} \cup B_{2}\right)=f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right),
$$

where $f^{-1}(b)=x \in X: f(x)=b$.
Exercise 4. Let $f: X \rightarrow Y$ be a map with $A_{1}, A_{2} \subset X$ and $B_{1}, B_{2} \subset Y$. Show that

$$
f^{-1}\left(B_{1} \cap B_{2}\right)=f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right)
$$

Exercise 5. Let $f: X \rightarrow Y$ be a map with $A_{1}, A_{2} \subset X$ and $B_{1}, B_{2} \subset Y$. Show that

$$
f^{-1}\left(Y \backslash B_{1}\right)=X \backslash f^{-1}\left(B_{1}\right) .
$$

