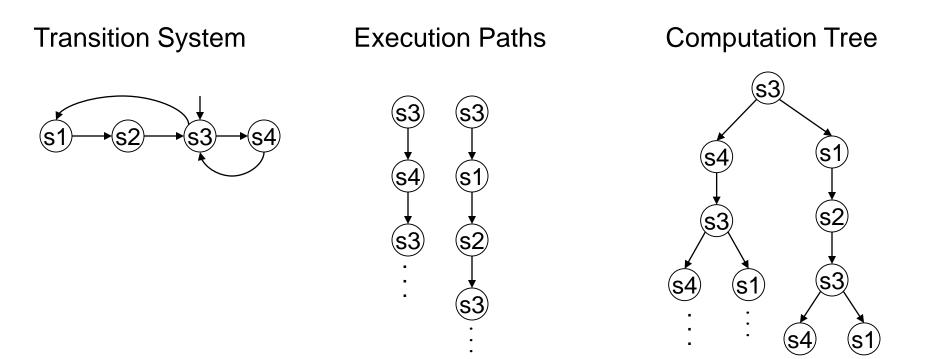


Model Checking

CTL model checking algorithms

Recall: Linear Time vs. Branching Time

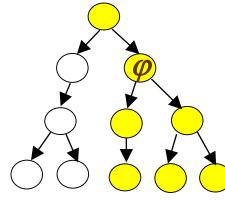
- In linear time logics we look at execution paths individually
 - In branching time logics we view the computation alternatives as a tree
 - computation tree unfolds the transition relation



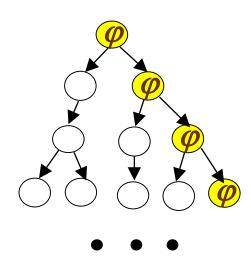
Recall: Computation Tree Logic (CTL)

- In CTL we quantify over the paths in the computation tree
- We use the same temporal operators as in LTL: X, G, F, U
- We attach path quantifiers to these temporal operators:
 - A : for all paths
 - E : there exists a path
- We end up with eight temporal operator pairs:
 AX, EX, AG, EG, AF, EF, AU, EU

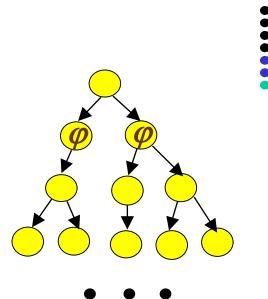
Examples



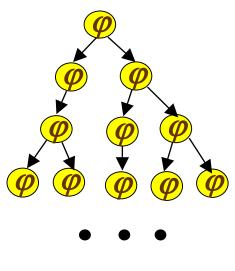
EX*\varphi* (exists next)



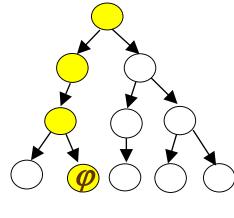
EG*\varphi* (exists global)



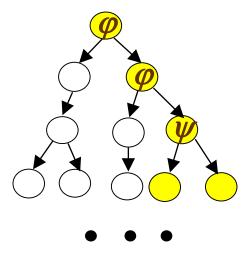
AX*\varphi* (all next)



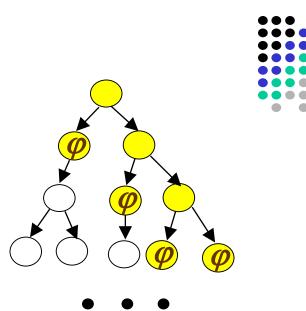
Examples (continued)



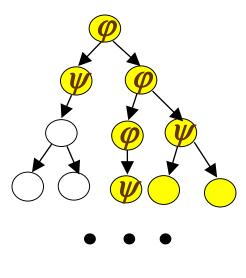
EF *\varphi* (exists future)



*φ*EU*ψ* (exists until)



 $AF\phi$ (all future)



 $\varphi AU \psi$ (all until)

Automated Verification of Finite State Systems [Clarke and Emerson 81], [Queille and Sifakis 82]

CTL Model checking problem:
 Given a transition system *T* = (*S*, *I*, *R*), and a CTL formula *φ*, does the transition system *T* satisfy the property *φ*?

CTL model checking problem can be solved in

$$O(|\varphi| \times (|S|+|R|))$$

Note:

- the complexity is <u>linear</u> in the size of the transition system T
- the complexity is <u>exponential</u> in the number of variables of φ and S in the number of concurrent components of T
 - → This is called the *state space explosion* problem.

CTL Model Checking Algorithm (1)

Translate the formula to a formula which uses only the basis

EX φ , EG φ , φ EU ψ

- EF $\varphi ==$ E[true U(φ)] (because F $\varphi ==$ [true U(φ)])
- $\mathbf{AX} \varphi == \neg \mathbf{EX}(\neg \varphi)$
- AG $\varphi == \neg EF(\neg \varphi) == \neg E[true U(\varphi)]$
- AF $\varphi ==$ A[true U φ] == ¬ EG(¬ φ)
- $\mathbf{A}[\varphi \mathbf{U} \psi] == \neg (\mathbf{E}[(\neg \psi) \mathbf{U} \neg (\varphi \lor \psi)] \lor \mathbf{EG}(\neg \psi))$

CTL Model Checking Algorithm (2)

- <u>Key idea</u>
 - Initially, the states S are labeled with atomic propositions from set AP.
 - Label the states of *M* with subformulas of *p* that hold in these states (start from the innermost non-atomic subformulas of φ).
 - Each (temporal or boolean) operator has to be processed only once.
 - Graph traversal algorithms (DFS or BFS) are used to find the labeling for each operator.
- Computation of each sub-formula takes O(|S|+|R|).

CTL Model Checking Algorithms: intuition

- **EX** φ is easy to do in O(|S|+|R|)
 - All the nodes which have a next state labeled with φ should be labeled with EX φ
- $\varphi EU \psi$: Find the states which are the initial states of a path where $\varphi U \psi$ holds

Equivalently,

- find the nodes which reach ψ labeled node by a path where each node is labeled with φ
- Label such nodes with $\varphi EU\psi$
- It is a reachability problem which can be solved in O(|S|+|R|)

CTL Model Checking Algorithms: intuition

EG *q* :

- Find paths where <u>each</u> node is labeled with φ and label nodes in such paths with EG φ :
 - First remove all the states which do not satisfy φ from the transition graph
 - Compute the connected components of the remaining graph and then find the nodes which can reach the connected components (both of which can be done in O(|S|+|R|)
 - Label the nodes with EG φ in the connected components and the nodes that can reach the connected components.

Verification vs. Falsification

- Verification:
 - Show that initial states \subseteq truth set of φ

• Falsification:

- Find if a state \in (initial states \cap truth set of $\neg \phi$)
- Generate a counter-example starting from that state
- CTL model checking algorithm can also generate a counter-example path (if the property is not satisfied) *without increasing the complexity*
- The ability to find counter-examples is one of the biggest strengths of model checkers

Problems with the previous algorithm

It is named explicit state model checking

- All the states and labels associated to the states must be recorded when doing states traversal
 - needs a lot of memory
 - causes exponential explosion of required memory
 - the number of states |S| in the transition graph *T* is exponential in the number of variables and concurrent processes in the system modelled with LTS.

LTS – Labeled Transition System (KS is simple form of LTS) Inroduction to symbolic state model checking

 How to deal with exponential explosion of the memory space of CTL model checking???

Characterization of Temporal operators as Fixpoints
[Emerson & Clarke 80]: Think about temporal op-s as recursive functions on sets
Here are some interesting CTL equivalences (for a state of computation tree)
value function

$$AG \varphi = \varphi \land AX AG \varphi$$

 $EG \varphi = \varphi \land EX EG \varphi$
 $AF \varphi = \varphi \lor AX AF \varphi$
 $EF \varphi = \varphi \lor EX EF \varphi$
 $\varphi AU\psi = \psi \lor (\varphi \land AX (\varphi AU\psi))$
 $\varphi EU\psi = \psi \lor (\varphi \land EX (\varphi EU\psi))$

Note:

We "unfold" the property by rewriting the CTL temporal operators using op-s themselves and EX and AX operators.

Functionals (mapping of an arbitrary set into a set)

 Given a transition system T=(S, I, R), we will define functions from sets of states to sets of states

 $-f: 2^{S} \rightarrow 2^{S}$ $2^{S} - set of subsets of S$

- For example, one such function is the EX operator (which computes the "pre-image" of a set of states given a relation *R*)
 - $EX: 2^S \rightarrow 2^S$

which can be defined as:

```
\mathsf{EX}(\boldsymbol{\varphi}) = \{ s \mid (s, s') \in R \text{ and } s' \in [|\boldsymbol{\varphi}|] \}
```

Abuse of notation:

Generally, $[|\varphi|]$ denotes the set of states which satisfy the property φ , i.e., the truth set of φ . Here we use just φ in the same sense.

Functionals

- Now, we can think of all temporal operators also as functionals from sets of states to sets of states
- For example,

in logic notation:

AX $\boldsymbol{\varphi} = \neg \mathsf{EX}(\neg \boldsymbol{\varphi})$

or if we use set notation

AX $\boldsymbol{\varphi} = (S - EX(S - \boldsymbol{\varphi}))$

Abuse of notation: we will use the set and logic notations interchangeably keeping in mind the correspondence =

<u>Logic</u>	<u>Set</u>
false	Ø
true	S
$\neg \phi$	S – <i>φ</i>
$\boldsymbol{\varphi} \wedge \boldsymbol{\psi}$	$oldsymbol{arphi} \cap oldsymbol{arphi}$
$\boldsymbol{\varphi} \lor \boldsymbol{\psi}$	$oldsymbol{arphi} \cup oldsymbol{\psi}$

Temporal Properties as Fixpoints (1)

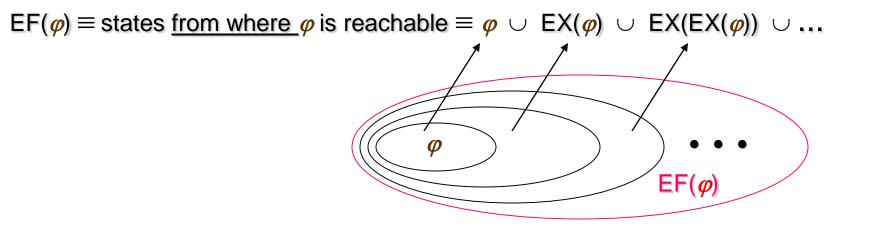
Based on the equivalence $EF \phi = \phi \lor EX EF \phi$ we observe that $(EF \varphi)$ is a fixpoint of the following function: $fy = \varphi \lor EX y$, where $y = EF \varphi$ i.e., fy = y

In fact, EF φ is the <u>least fixpoint</u> of f, which is written as:

$$EF \varphi = \mu y \cdot \varphi \vee EX y$$
function
argument

Value of the function is fp if it equals to the argument

EF Fixpoint Computation



Temporal Properties as Fixpoints (2)

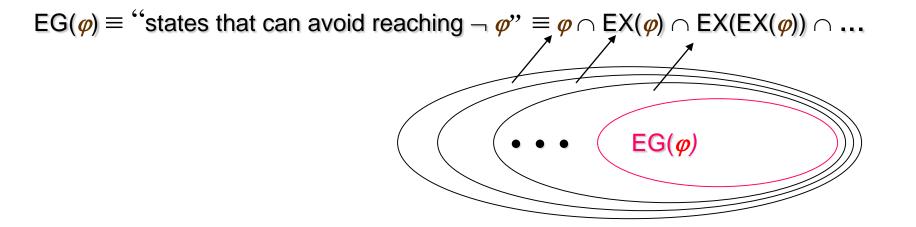
Based on the equivalence EG $\varphi = \varphi \land EX EG \varphi$ we observe that EG φ is a fixpoint of the following function:

In fact, EG φ is the <u>greatest fixpoint</u> of f, which is written as:

 $EG \varphi = v y \cdot \varphi \wedge EX y$ function argument

Value that is FP

EG Fixpoint Computation



μ-Calculus

 μ -Calculus is a temporal logic which consist of :

- Atomic properties AP
- Boolean connectives: \neg , \land , \lor
- Pre-image operator: EX
- Least and greatest fixpoint operators: μ y. *F* y and ν y. *F* y

Any CTL* formula can be expressed in μ -calculus

Symbolic Model Checking

[McMillan et al. LICS 90]

- Represent sets of states S and the transition relation R as Boolean logic formulas
- Fixpoint computation becomes formula manipulation, i.e.
 - pre-condition (EX) computation:

including existentially bound variable elimination

- conjunction (intersection), disjunction (union) and negation (set difference), and equivalence check
- Use an efficient data structure for boolean logic formulas
 - Binary Decision Diagrams (BDDs)

Example: Mutual Exclusion Protocol

Two concurrently executing processes are trying to enter their critical section without violating mutual exclusion condition

```
Process 1:
while (true) {
   out: a := true; turn := true;
  wait: await (b = false or turn = false);
  cs: a := false;
Process 2:
while (true) {
   out: b := true; turn := false;
  wait: await (a = false or turn);
  cs: b := false;
```

Encoding State Space S

- Encode the state space using only boolean variables
- Two program counter variables: pc1, pc2 with domains {out, wait, cs}
 - We need two boolean variables per program counter to encode their 3 values:

- Encoding:
 - $\begin{array}{lll} \neg pc1_0 \wedge \neg pc1_1 & \equiv & pc1 = out \\ \neg pc1_0 \wedge pc1_1 & \equiv & pc1 = wait \\ pc1_0 \wedge pc1_1 & \equiv & pc1 = cs \end{array}$
- The other three variables are already booleans: turn, a, b

Encoding State Space S

- Each state can be written as a tuple: (pc1₀, pc1₁, pc2₀, pc2₁, turn, a, b)
 After encoding:
 (<u>o</u>, <u>o</u>, F, F, F) becomes (F,F,F,F,F,F,F,F)
 (<u>o</u>, <u>c</u>, F, T, F) becomes (F,F,T,T,F,T,F)
- We can use boolean logic formulas on the variables $pc1_0, pc1_1, pc2_0, pc2_1, turn, a, b$ to represent **sets** of states: $\{(F,F,F,F,F,F,F)\} \equiv \neg pc1_0 \land \neg pc1_1 \land \neg pc2_0 \land \neg pc2_1 \land \neg turn \land \neg a \land \neg b$ $\{(F,F,T,T,F,F,T)\} \equiv \neg pc1_0 \land \neg pc1_1 \land pc2_0 \land pc2_1 \land \neg turn \land \neg a \land b$

$$\{ (F,F,F,F,F,F,F), (F,F,T,T,F,F,T) \} \equiv \neg pc1_0 \land \neg pc1_1 \land \neg pc2_0 \land \neg pc2_1 \land \neg turn \land \neg a \land \neg b \lor \neg pc1_0 \land \neg pc1_1 \land pc2_0 \land pc2_1 \land \neg turn \land \neg a \land b \\ \equiv \neg pc1_0 \land \neg pc1_1 \land \neg turn \land \neg b \land (pc2_0 \land pc2_1 \leftrightarrow b)$$

Encoding Initial States

- We can write the initial states as a boolean logic formuli

 recall that, initially: pcl=0 and pc2=0 but other
 variables may have any value in their domain

$$I = \{(0,0,F,F,F), (0,0,F,F,T), (0,0,F,T,F), (0,0,F,T,T), (0,0,F,T,T), (0,0,T,F,F), (0,0,T,F,T), (0,0,T,T,F), (0,0,T,T,T)\}$$

= $\neg pc1_0 \land \neg pc1_1 \land \neg pc2_0 \land \neg pc2_1$

meaning that

pc1 and pc2 are set to false and other variables may have arbitrary boolean values

Encoding the Transition Relation

- We can use boolean logic formulas and primed variables to encode the transition relation *R*.
- We will use two sets of variables:
 - Current state variables: pc1₀,pc1₁,pc2₀,pc2₁,turn,a,b
 - Next state variables: pc1₀',pc1₁',pc2₀',pc2₁',turn',a',b'
- For example, we can write a boolean logic formula for the statement of process 1:

cs: a := false;

as follows

 $\begin{array}{l} pc1_0 \wedge pc1_1 \wedge \neg pc1_0' \wedge \neg pc1_1' \wedge \neg a' \wedge \\ (pc2_0' \leftrightarrow pc2_0) \wedge (pc2_1' \leftrightarrow pc2_1) \wedge (turn' \leftrightarrow turn) \wedge (b' \leftrightarrow b) \\ - Call this formula R_{1c} \end{array}$

Encoding the Transition Relation

- Similarly we can write a formula R_{ij} for each statement in the program
- Then the overall transition relation is $R \equiv R_{1o} \lor R_{1w} \lor R_{1c} \lor R_{2o} \lor R_{2w} \lor R_{2c}$

But how to interprete temporal operators of φ on symbolic representation of M??

Symbolic Pre-condition Computation

Recall the pre-image function
 EX : 2^S → 2^S
 which is defined as:

 $\mathsf{EX}(\boldsymbol{\varphi}) = \{ s \mid (s,s') \in R \text{ and } s' \in [|\boldsymbol{\varphi}|] \}$

- We can symbolically compute *pre* as follows
 EX(φ) ≡ ∃V (R ∧ φ [V / V])
 - -V: values of boolean variables in the current-state
 - -V: values of boolean variables in the next-state
 - φ [V / V] : rename variables in φ by replacing current-state variables with the corresponding next-state variables
 - $\exists V' f$: existentially quantify out all the variables in V' from f

Renaming

- Assume that we have two variables x, y.
- Then, *V* = {x, y} and *V* = {x', y'}
- Renaming example:

Given $\varphi \equiv x \land y$: $\varphi[V' / V] \equiv x \land y [V' / V] \equiv x' \land y'$

Existential Quantifier Elimination

Given a boolean formula *f* and a single variable *v* ∃*v f* = *f* [*true*/*v*] ∨ *f* [*false*/*v*]
 i.e., to existentially quantify out a variable, first set it to true then set it to false and then take the disjunction of the two results.

• Example:
$$f \equiv \neg x \land y \land x' \land y'$$

 $\exists V' f \equiv \exists x' (\exists y' (\neg x \land y \land x' \land y'))$
 $\equiv \exists x' ((\neg x \land y \land x' \land y')[true/y'] \lor (\neg x \land y \land x' \land y')[false/y'])$
 $\equiv \exists x' (\neg x \land y \land x' \land true \lor \neg x \land y \land x' \land false)$
 $\equiv \exists x' (\neg x \land y \land x')$
 $\equiv (\neg x \land y \land x')[true/x'] \lor (\neg x \land y \land x')[false/x'])$
 $\equiv \neg x \land y \land true \lor \neg x \land y \land false$
 $\equiv \neg x \land y$

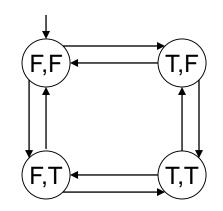
An Extremely Simple Example

```
Variables: x, y: boolean
```

```
Set of states:

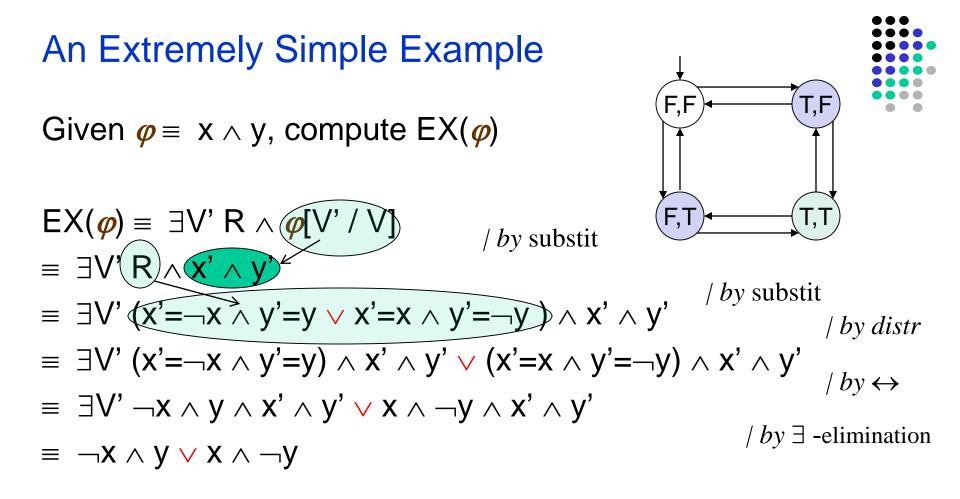
S = \{(F,F), (F,T), (T,F), (T,T)\}

S \equiv true
```



Initial condition: $I \equiv \neg x \land \neg y$

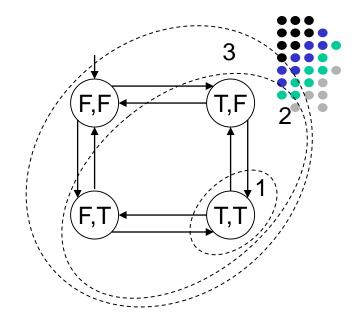
Transition relation (negates one variable at a time): $R \equiv x' = \neg x \land y' = y \lor x' = x \land y' = \neg y$ (= means \leftrightarrow)



 $EX(x \land y) \equiv \neg x \land y \lor x \land \neg y$ In other words $EX(\{(\mathsf{T},\mathsf{T})\}) \equiv \{(\mathsf{F},\mathsf{T}), (\mathsf{T},\mathsf{F})\}$

An Extremely Simple Example

Let's compute $EF(x \land y)$



The fixpoint sequence is

False, $x \land y$, $x \land y \lor EX(x \land y)$, $x \land y \lor EX(x \land y \lor EX(x \land y))$, ... If we do the EX computations, we get:

False,
$$x \land y$$
, $x \land y \lor \neg x \land y \lor x \land \neg y$,True0123

 $EF(x \land y) \equiv True$ In other words $EF(\{(T,T)\}) \equiv \{(F,F),(F,T), (T,F),(T,T)\}$

An Extremely Simple Example

- Based on our results, for extremely simple transition system
 T = (S, I, R) we have
- lf

 $I \subseteq EF(x \land y)$ (\subseteq corresponds to implication) hence: $T \models EF(x \land y)$

(i.e., there exists a path from each initial state where eventually x and y both become true in the same state)If

$$I \not\subseteq EX(x \land y)$$
 hence:
 $T \not\models EX(x \land y)$

(i.e., there does not exist a path from each initial state where in the next state x and y both become true)

An Extremely Simple Example

- Let's try one more property $AF(x \land y)$
- To check this property we first convert it to a formula which uses only the temporal operators in our basis:
 AF(x ∧ y) ≡ ¬ EG(¬(x ∧ y))

i.e.,

if we can find an initial state which satisfies $EG(\neg(x \land y))$, then we know that the transition system *T* does not satisfy the property $AF(x \land y)$

An Extremely Simple Example

Let's compute $EG(\neg(x \land y))$

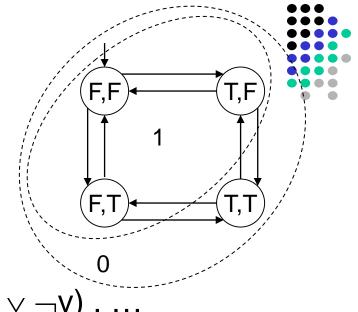
The fixpoint sequence is:

true,
$$\neg x \lor \neg y$$
, $(\neg x \lor \neg y) \land \mathsf{EX}(\neg x \lor \neg y)$, ...

If we do the EX computations, we get:

$$\underbrace{\begin{array}{ccc} \text{True,} \\ 0 \end{array}}_{0} \underbrace{\begin{array}{c} \neg x \lor \neg y, \\ 1 \end{array}}_{2} \underbrace{\begin{array}{c} \neg x \lor \neg y, \\ 2 \end{array}}_{2}$$

 $EG(\neg(x \land y)) \equiv \neg x \lor \neg y$ Since $I \cap EG(\neg(x \land y)) \neq \emptyset$ we conclude that $T \not\models AF(x \land y)$



Symbolic CTL Model Checking Algorithm (in general)

- Translate the formula to a formula which uses the basis
 EX \u03c6, EG \u03c6, \u03c6 EU \u03c6
- Atomic formulas can be interpreted directly on the state representation
- For EX *\varphi* compute the pre-image using existential variable elimination as we discussed
- For EG and EU compute the fixpoints iteratively

Symbolic Model Checking Algorithm

;

Check(*f* : CTL formula) : boolean logic formula (here we use logic encoding of sets of states)

case: $f \in AP$	return <i>f;</i>
case: $f \equiv \neg \varphi$	return \neg Check(ϕ);
case: $f \equiv \phi \land \psi$	return Check($oldsymbol{arphi}$) \wedge Check($oldsymbol{\psi}$);
case: $f \equiv \phi \lor \psi$	return Check($oldsymbol{arphi}$) \lor Check($oldsymbol{\psi}$);
case: $f \equiv EX \phi$	return $\exists V.R \land Check(\phi)[V'/V]$

Symbolic Model Checking Algorithm

Check(f)

```
. . .
case: f \equiv EG \phi
    Y := True;
    P := Check(\varphi);
    Y' := P \land Check(EX(Y));
    while (Y \neq Y')
    ł
          Y := Y';
          Y' := P \land Check(EX(Y));
    }
    return Y;
```



```
Check(f)
  . . .
  case: f \equiv \phi EU \psi
      Y := False;
      P := Check(\phi);
      Q := Check(\psi);
      Y' := Q \vee [P \land Check(EX(Y))];
      while (Y \neq Y')
       ł
             Y := Y';
             Y' := Q \vee [P \land Check(EX(Y))];
       }
      return Y;
```

Symbolic Model Checking Algorithm

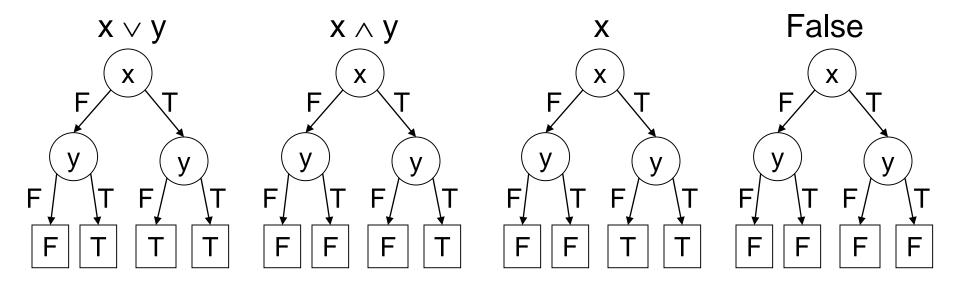
Binary Decision Diagrams (BDDs)

- Binary Decision Diagrams (BDDs)
 - An efficient data structure for boolean formula manipulation.
 - There are BDD packages available, e.g. https://github.com/johnyf/tool_lists/blob/master/bdd.md
- BDD data structure can be used to implement the symbolic model checking algorithms discussed above.
- BDDs are *canonical representation* for boolean logic formulas, i.e.
 - given formulas *F* and *G*, they are $F \Leftrightarrow G$ if their BDD representations will be identical.

Binary Decision Trees (BDT)

Fix a variable order, in each level of the tree branch one value of the variable in that level.

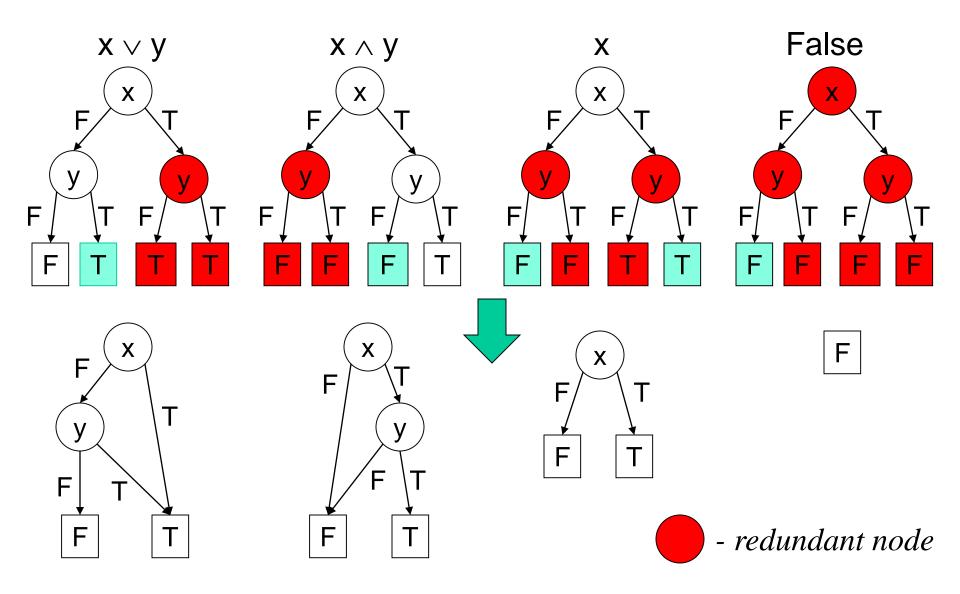
 Examples of BDT-s for boolean formulas on two variables: Variable order: x, y



Transforming BDT to BDD

- Repeatedly apply the following transformations to a BDT:
 - Remove duplicate terminals & redraw connections to remaining terminals that have same name as deleted ones
 - Remove duplicate non-terminals & ...
 - Remove redundant tests
- These transformations transform the tree to a directed acyclic graph binary decision diagram (BDD).

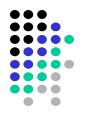
Binary Decision Trees vs. BDDs



Good News About BDDs

- Given BDDs for two boolean logic formulas F and G,
 - the BDDs for $F \wedge G~$ and $F \vee G$ are of size $|F| \times |G|$ (and can be computed in that time)
 - the BDD for \neg F is of size |F| (and can be computed in that time)
 - Equivalence $F \equiv ?$ G can be checked in constant time
 - Satisfiability of F can be checked in constant time

Bad News About BDDs

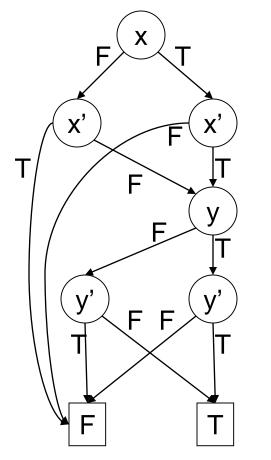


- The size of a BDD can be exponential in the number of boolean variables
- The sizes of the BDDs are very <u>sensitive to the ordering of variables</u>. Bad variable ordering can cause exponential increase in the size of the BDD
- There are functions which have BDDs that are exponential for any variable ordering (for example binary multiplication)
- Pre-condition computation requires existential variable elimination
 - Existential variable elimination can cause an exponential blow-up in the size of the BDD

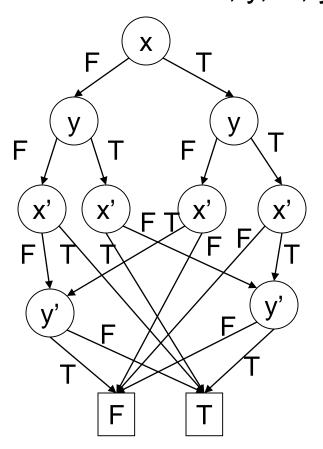
BDDs are Sensitive to Variable Ordering

Identity relation for two variables: $(x' \leftrightarrow x) \land (y' \leftrightarrow y)$

Variable order: x, x', y, y'



Variable order: x, y, x', y'



For *n* variables, 3n+2 nodes

For *n* variables, $3 \times 2^n - 1$ nodes

What About LTL and CTL* Model Checking?

- The complexity of the model checking problem for LTL and CTL* is:
 (|S|+|R|) × 2^{O(|f|)}
 where | f | is the number of logic connectives in *f*.
- Typically the size of the formula is much smaller than the size of the transition system
 - So the exponential complexity in the size of the formula is not very significant in practice
- LTL properties are intuitive and easy to write correctly
 - XF φ and FX φ are equivalent in LTL
 - AXAF φ and AFAX φ are not equivalent in CTL