
GO

JAVA
FUNDAMENTALS

THREADSAFETYANDLOCKS

Mihhail Lapushkin 
mihhail.lapushkin@zeroturnaround.com 

 
March 13, 2017

• Executors

• Locks

• Concurrency idioms

• Sharing objects

• Homework

AGENDA

EXECUTORS

TASK

Tasks are independent activities

class WebServer {
 public static void main(String[] args) {
 ServerSocket socket = new ServerSocket(80);
 while (true) {
 Socket connection = socket.accept();
 handleRequest(connection);
 }
 }
}

EXECUTING TASKS SEQUENTIALLY

class WebServer {  
 public static void main(String[] args) {  
 ServerSocket socket = new ServerSocket(80);  
 while (true) {  
 Socket connection = socket.accept();  
 new Thread(() -> handleRequest(connection)).start();  
 }  
 }  
}

EXPLICITLY CREATING THREADS

DISADVANTAGES

• Thread lifecycle overhead

• Resource consumption

• Stability

Thread pool pattern consists of a
number m of threads, created to

perform a number n of tasks
concurrently.

THREAD POOLS

interface Executor {  
 void execute(Runnable command);  
}  
 
interface Runnable {  
 void run();  
}

EXECUTOR

class WebServer {  
 public static void main(String[] args) {
  
 ServerSocket socket = new ServerSocket(80);
 while (true) {  
 Socket connection = socket.accept();  
 new Thread(() -> handleRequest(connection)).start();  
 }  
 }  
}

EXPLICITLY CREATING THREADS

class WebServer {  
 public static void main(String[] args) {  
 Executor exec = Executors.newFixedThreadPool(100);  
 ServerSocket socket = new ServerSocket(80);  
 while (true) {  
 Socket connection = socket.accept();  
 exec.execute(() -> handleRequest(connection));  
 }  
 }  
}

USING A THREAD POOL

ADVANTAGES OF THREAD POOLS

• Minimal thread lifecycle overhead

• Enable to have enough threads to keep the
processors busy

• Limit the number of threads to avoid
OutOfMemoryError

• Improved responsiveness

EXECUTION POLICIES

public ThreadPoolExecutor(int corePoolSize,  
 int maximumPoolSize,  
 long keepAliveTime,  
 TimeUnit unit,  
 BlockingQueue<Runnable> workQueue,  
 ThreadFactory threadFactory,  
 RejectedExecutionHandler handler)

EXECUTION POLICIES

• In what thread will tasks be executed?

• In what order should tasks be executed (FIFO, LIFO,
priority order)?

• How many tasks may execute concurrently?

• How many tasks may be queued pending execution?

EXECUTION POLICIES

• If a task has to be rejected because the system is
overloaded, which task should be selected as the
victim, and how should the application be notified?

• What actions should be taken before or after
executing a task?

THREAD POOL EXECUTORS

Executors.newFixedThreadPool(int nThreads)

Executors.newCachedThreadPool()

Executors.newSingleThreadExecutor()

Executors.newScheduledThreadPool()

• Enables to schedule tasks

• after a given delay

• at the specified time

• Enables to repeat tasks

• at fixed rate

• at fixed delay

ScheduledThreadPoolExecutor

EXECUTOR LIFECYCLE
interface ExecutorService extends Executor {  
 void shutdown()  
 List<Runnable> shutdownNow()  
 boolean isShutdown()  
 boolean isTerminated()  
 boolean awaitTermination(long timeout, TimeUnit unit)
 throws InterruptedException  
 …  
}

RESULT-BEARING TASKS
interface ExecutorService extends Executor {  
 <T> Future<T> submit(Callable<T> task)  
 <T> Future<T> submit(Runnable task, T result);  
 Future<?> submit(Runnable task);  
 ...  
}  

interface Callable<V> {  
 V call()
}

RESULT-BEARING TASKS
interface Future<V> {  
 boolean cancel(boolean mayInterrupt)  
 boolean isCancelled()  
 boolean isDone()  
 V get()
 throws InterruptedException, ExecutionException;  
 V get(long timeout, TimeUnit unit)
 throws InterruptedException, ExecutionException,
 TimeoutException;  
}

EXECUTING A BATCH OF TASKS

interface ExecutorService extends Executor {  
 <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)  
 <T> T invokeAny(Collection<? extends Callable<T>> tasks)  
 ...  
}

LOCKS

Lock l = ...;
l.lock();
try {
 // access the resource protected by this lock
} finally {
 l.unlock();
}

LOCK OBJECT VS MONITOR
• Locks are similar to synchronized methods and statements, but more flexible

• Customizable (custom conditions, non-sequential lock acquisition/release,
deadlock detection, etc.)

MEMORY VISIBILITY OF LOCKS
• All Lock implementations must enforce the same memory

synchronization semantics as provided by the built-in monitor lock,
as described in section 17.4 of The Java™ Language Specification:

• A successful lock operation has the same memory synchronization effects as
a successful Lock action.

• A successful unlock operation has the same memory synchronization effects
as a successful Unlock action.

• Unsuccessful locking and unlocking operations, and reentrant
locking/unlocking operations, do not require any memory
synchronization effects.

public interface Lock {
 void lock(); // acquire lock, wait
 void lockInterruptibly()
 throws InterruptedException; // acquire lock, wait, interruptible
 boolean tryLock(); // acquire lock, immediate
 boolean tryLock(long time, TimeUnit unit)
 throws InterruptedException; // acquire lock, immediate, …
 // … timed, interruptible
 void unlock(); // release lock
 Condition newCondition();
}

LOCK INTERFACE

class KeepLock extends Thread {
 private final Object lock;
 public KeepLock(Object lock) { this.lock = lock; }
 public void run() {
 try {
 synchronized (lock) {
 while (true) Thread.sleep(1000); // doing stuff
 }
 } catch (InterruptedException e) { }
 }
}

KEEP A LOCK

public class KeepLockRunner {
 public static void main(String[] args) {
 Object lock = new Object();
 Thread t = new KeepLock(lock);
 t.start();
 Thread.sleep(1000);
 t.interrupt();
 }
}

KEEP A LOCK

public class KeepLockRunner {
 public static void main(String[] args) {
 Object lock = new Object();
 Thread t1 = new KeepLock(lock);
 Thread t2 = new KeepLock(lock); // -added-
 t1.start();
 Thread.sleep(1000);
 t2.start(); // -added-
 t1.interrupt();
 Thread.sleep(1000); // -added-
 t2.interrupt(); // -added-
 }
}

KEEP A LOCK

class KeepLock extends Thread {
 private final Object lock;
 public KeepLock(Object lock) { this.lock = lock; }
 public void run() {
 try {
 synchronized (lock) {
 while (true) Thread.sleep(1000); // doing stuff
 }
 } catch (InterruptedException e) { }
 }
}

KEEP A LOCK

public class KeepLockRunner {
 public static void main(String[] args) {
 Object lock = new Object();
 Thread t1 = new KeepLock(lock);
 Thread t2 = new KeepLock(lock);
 t1.start();
 Thread.sleep(1000);
 t2.start();
 Thread.sleep(1000);
 t2.interrupt();
 t1.interrupt();
 }
}

KEEP A LOCK

OOPS!

Cannot interrupt the second thread while
the first thread is not interrupted

• A re-entrant mutual exclusion Lock with the same basic behaviour and
semantics as the implicit monitor lock accessed using synchronized
methods and statements, but with extended capabilities.

• Interruptible

• Timed

• Fairness

• Returns immediately if the lock is held by the current thread

ReentrantLock

class KeepLock extends Thread {
 private final ReentrantLock lock;
 public KeepLock(ReentrantLock lock) { this.lock = lock; }
 public void run() {
 try {
 lock.lockInterruptibly();
 try {
 while (true) Thread.sleep(1000); // doing stuff
 } finally {
 lock.unlock();
 }
 } catch (InterruptedException e) {}
 }
}

KEEP A LOCK INTERRUPTIBLY

public class KeepLockRunner {
 public static void main(String[] args) {
 Object lock = new Object();
 Thread t1 = new KeepLock(lock);
 Thread t2 = new KeepLock(lock);
 t1.start();
 Thread.sleep(1000);
 t2.start();
 Thread.sleep(1000);
 t2.interrupt();
 t1.interrupt();
 }
}

KEEP A LOCK INTERRUPTIBLY

public class KeepLockRunner {
 public static void main(String[] args) {
 ReentrantLock lock = new ReentrantLock();
 Thread t1 = new KeepLock(lock);
 Thread t2 = new KeepLock(lock);
 t1.start();
 Thread.sleep(1000);
 t2.start();
 Thread.sleep(1000);
 t2.interrupt();
 t1.interrupt();
 }
}

KEEP A LOCK INTERRUPTIBLY

class KeepLock extends Thread {
 private final ReentrantLock lock;
 public KeepLock(ReentrantLock lock) { this.lock = lock; }
 public void run() {
 try {
 lock.lockInterruptibly();
 try {
 while (true) Thread.sleep(1000); // doing stuff
 } finally {
 lock.unlock();
 }
 } catch (InterruptedException e) {}
 }
}

KEEP A LOCK INTERRUPTIBLY

interface ReadWriteLock {
 Lock readLock();
 Lock writeLock();
}

ReadWriteLock
A lock that offers better concurrent access. Useful for synchronisation when reads are
frequent and writes infrequent

• Read lock can be held by multiple threads as long as write lock is not held.

• Write lock is exclusive

• Must guarantee that the memory synchronization effects of writeLock operations also
hold with respect to the associated readLock. A thread successfully acquiring the read
lock will see all updates made upon previous release of the write lock.

DEADLOCK
• When a thread holds a lock forever, other threads attempting to acquire

that lock will block forever waiting.

• When thread A holds lock L and tries to acquire lock M, but at the same
time thread B holds M and tries to acquire L, both threads will wait forever

• No way to resolve a deadlock on a JVM, when a set of threads deadlock,
thats it. The only way to restore the application to health is to abort and
restart it - and hope the same thing doesn’t happen again.

• Depending on what those threads do, the application may stall completely,
or a particular subsystem may stall, or performance may suffer.

class LeftRightDeadlock {
 private final Object left = new Object();
 private final Object right = new Object();
 public void leftRight() {
 synchronized (left) {
 synchronized (right) {
 doSomething();
 }
 }
 }
 public void rightLeft() {
 synchronized (right) {
 synchronized (left) {
 doSomethingElse();
 }
 }
 }
}

DEADLOCK

• The deadlock in LeftRightDeadlock came about because the two
threads attempted to acquire the same locks in a different order.

• If they asked for the locks in the same order, there would be no
cyclic locking dependency and therefore no deadlock.

• If you can guarantee that every thread that needs locks L and M at
the same time always acquires L and M in the same order, there will
be no deadlock

DEADLOCK

AVOIDING DEADLOCKS
• If possible, never acquire more than one lock

• When acquiring multiple locks, ensure that lock ordering is
consistent across your entire program

• Lock.tryLock(long time, TimeUnit unit)

void transferMoney(Account fromAccount, Account toAccount, Amount amount) {
 synchronized (fromAccount) {
 synchronized (toAccount) {
 fromAccount.debit(amount);
 toAccount.credit(amount);
 }
 }
}

AVOIDING DEADLOCKS

void transferMoney(Account fromAccount, Account toAccount, Amount amount) {
 Account account1 = …
 Account account2 = …  
 
 synchronized (account1) {
 synchronized (account2) {
 fromAccount.debit(amount);
 toAccount.credit(amount);
 }
 }
}

AVOIDING DEADLOCKS

THREAD-DUMP ANALYSIS
• While preventing deadlocks is mostly your problem, the JVM can

help identify them when they do happen using thread dumps.

• A thread dump includes a stack trace for each running thread,
similar to the stack trace that accompanies an exception.

• Thread dumps also include locking information, such as which locks
are held by each thread, in which stack frame they were acquired,
and which lock a blocked thread is waiting to acquire

• Send the JVM process a SIGQUIT signal (kill -3) on Unix platforms

• Press the Ctrl-\ key on Unix platforms

• Press Ctrl-Break on Windows platforms

• Many IDEs can request a thread dump also

GENERATING THREAD-DUMPS

CONCURRENCY
IDIOMS

CONCURRENT PROGRAMS
• “No set of operations performed sequentially or concurrently on

instances of a thread-safe class can cause an instance to be in an
invalid state.”

• Manages access to shared mutable state

• Visibility across different threads of execution

• Atomicity of compound operations

class TellMeTheNumber {
 static boolean ready;
 static int number;
 static class ReaderThread extends Thread {
 public void run() {
 while (!ready) Thread.yield();
 System.out.println(number);
 }
 }
 public static void main(String[] args) {
 new ReaderThread().start();
 number = 42; ready = true;
 }
}

SHARED MUTABLE STATE

VISIBILITY
• Visibility in a single thread is natural and intuitive

• In multi-threaded applications, things that can go wrong are subtle
and counterintuitive

• Visibility across threads must be ensured by using proper
synchronisation

• Happens-before relationship

LOCKING AND VISIBILITY
• Threads entering synchronized blocks guarded by the same lock

see the each other writes.

• Without synchronization, there is no such guarantee.

• You could see stale values

• Stale data can cause serious and confusing failures such as
unexpected exceptions, corrupted data structures, inaccurate
computations, and infinite loops.

public class MutableInteger {
 private int value;

 public int get() {
 return value;
 }

 public void set(int value) {
 this.value = value;
 }
}

LOCKING AND VISIBILITY

public class MutableInteger {
 private int value;

 public synchronized int get() {
 return value;
 }

 public synchronized void set(int value) {
 this.value = value;
 }
}

LOCKING AND VISIBILITY

VOLATILE
• The visibility effects of volatile variables extend beyond the value of the

volatile variable itself. When thread A writes to a volatile variable and
subsequently thread B reads that same variable, the values of all variables
that were visible to A prior to writing to the volatile variable become visible
to B after reading the volatile variable.

• From a memory visibility perspective, writing a volatile variable is like
exiting a synchronized block and reading a volatile variable is like entering a
synchronized block

• Compound operations still require locks!

public class MutableInteger {
 private int value;

 public int get() {
 return value;
 }

 public void set(int value) {
 this.value = value;
 }
}

VOLATILE

public class MutableInteger {
 private volatile int value;

 public int get() {
 return value;
 }

 public void set(int value) {
 this.value = value;
 }
}

VOLATILE

ATOMICITY
• Compound operations that from a perspective of another

thread should be atomic - either all operations are done or
none of them

• check-then-act (lazy initialization)

• read-modify-write (increment operation)

• Use classes in the java.util.concurrent.atomic package
or proper synchronization to ensure atomicity

CHECK-THEN-ACT
public class Singleton {
 private static Singleton instance;

 public static Singleton getInstance() {
 if (instance == null) {
 instance = new Singleton();
 }

 return instance;
 }
}

CHECK-THEN-ACT
public class Singleton {
 private static Singleton instance;

 public static synchronized Singleton getInstance() {
 if (instance == null) {
 instance = new Singleton();
 }

 return instance;
 }
}

public class Counter {
 private int value = 0;

 public int get() {
 return value;
 }

 public void increment() {
 this.value++;
 }
}

READ-MODIFY-WRITE

public class Counter {
 private int value = 0;

 public synchronized int get() {
 return value;
 }

 public synchronized void increment() {
 this.value++;
 }
}

READ-MODIFY-WRITE

SHARING
OBJECTS

• Publishing an object means making it available to code outside of its current scope,
such as by storing a reference to it where other code can find it, returning it from a
non-private method, or passing it to a method in another class

• Object internals should generally not be published

• Publishing an object for general use should be done in a thread-safe manner

• Publishing objects before they are fully constructed can compromise thread-safety

• An object that is published when it should not have been is said to have escaped

PUBLISHING AN OBJECT

class Secrets {
 public Set<Secret> secrets;

 public Secrets() {
 secrets = new HashSet<>();
 }
}

PUBLISHING AN OBJECT
• Object internals should generally not be published

class Secrets {
 private Set<Secret> secrets;

 public Secrets() {
 secrets = new HashSet<>();
 }
}

PUBLISHING AN OBJECT

class States {
 private String[] states = new String[]{"AK","AL"};

 public String[] getStates() {
 return states;
 }
}

PUBLISHING AN OBJECT
• Publishing an object for general use should be done in a thread-safe manner

class States {
 private String[] states = new String[]{"AK","AL"};

 public String[] getStatesSnapshot() {
 return Arrays.copyOf(states, states.length);
 }
}

PUBLISHING AN OBJECT

class States {
 private String[] states = new String[]{"AK","AL"};

 public synchronized String getState(int index) {
 return states[index];
 }

 public synchronized void setState(String state, int index) {
 states[index] = state;
 }
}

PUBLISHING AN OBJECT

SAFE CONSTRUCTION
• An object is in a predictable, consistent state only after its constructor

returns, so publishing an object from within its constructor can publish an
incompletely constructed object

• Do not let the this reference to escape

• Creating an instance of an anonymous inner class includes a reference to this

• Creating an instance of a Runnable and starting a Thread in a constructor

public class EventConsumer {
 public EventConsumer(EventSource source) {
 source.registerListener(new EventListener() {
 public void onEvent(Event e) {
 doSomething(e);
 }
 });
 …
 }
}

SAFE CONSTRUCTION

public class EventConsumer {
 private EventConsumer() {}
 public static EventConsumer create(EventSource source) {
 final EventConsumer consumer = new EventConsumer();
 source.registerListener(new EventListener() {
 public void onEvent(Event e) {
 consumer.doSomething(e);
 }
 });
 return consumer;
 …
 }
}

SAFE CONSTRUCTION

THREAD CONFINEMENT
• One way to avoid accessing shared data is to not share

• If data is only accessed from a single thread, no
synchronization is needed.

• Thread confinement is an element of your program’s
design that must be enforced by its implementation. The
language has no mechanism for confining an object to a
thread.

ThreadLocal

• ThreadLocal provides get and set accessor methods that
maintain a separate copy of the value for each thread that
uses it

• A get returns the most recent value passed to set from the
currently executing thread

http://www.amazon.com/The-Multiprocessor-Programming-Revised-Reprint/dp/0123973376

The Art of
Multiprocessor
Programming

by Maurice Herlihy, Nir Shavit

http://www.amazon.com/The-Multiprocessor-Programming-Revised-Reprint/dp/0123973376

HOMEWORK 7

https://github.com/JavaFundamentalsZT/jf-hw-money-transfers

https://github.com/JavaFundamentalsZT/jf-hw-money-transfers

