Exercise 15

Show that

```
\vdash{M>1}
BEGIN
X:=0;
    FOR N:=1 UNTIL M DO X:=X +N
    END
    {X=(M\times(M+1)) DIV 2}
```


Exercise 21

Show that

```
f {M\geq0}
BEGIN
                X:=0;
                FOR N:=1 UNTIL M DD X:=X +N
            END
                {X=(M\times(M+1)) DIV 2}
```


Exercise 22

Deduce:

$$
\begin{aligned}
& +\{\mathrm{S}=(\mathrm{x} \times \mathrm{y})-(\mathrm{x} \times \mathrm{Y})\} \\
& \text { WHILE } \neg \text { ODD }(\mathrm{x}) \text { DD } \\
& \text { BEGIN } \mathrm{Y}:=2 \times \mathrm{Y} ; \mathrm{X}:=\mathrm{X} \text { DIV } 2 \text { END } \\
& \{\mathrm{S}=(\mathrm{x} \times \mathrm{y})-(\mathrm{X} \times \mathrm{Y}) \wedge \operatorname{DDD}(\mathrm{X})\}
\end{aligned}
$$

Exercise 25

Prove the following invariant property.

```
f {S=(x-x)}\times\textrm{y}\wedge\=y
    BEGIN
        VAR R;
        R:=0;
        WHILE }\neg(\textrm{R}=\textrm{Y})\mathrm{ DO
            BEGIN S:=S+1; R:=R+1 END;
        X:=X-1
    END
    {S = (x-x)}\times\textrm{y}
```

Hint: Show that $\mathrm{S}=(\mathrm{x}-\mathrm{x}) \times \mathrm{y}+\mathrm{R}$ is an invariant for $\mathrm{S}:=\mathrm{S}+1 ; \mathrm{R}:=\mathrm{R}+1$.

Exercise 28

Prove that the command

```
BEGIN
    Z:=0;
    WHILE }\neg(x=0) D
        BEGIN
            IF ODD(X) THEN Z:=Z+Y;
            Y:=Y\times2;
            X:=X DIV 2
        END
END
```

computes the product of the initial values of X and Y and leaves the result in Z .

Invariant for Exercise 15:

$$
\mathrm{R} \equiv \mathrm{X}=\mathrm{N} *(\mathrm{~N}-1) \mathrm{DIV} 2
$$

