Hybrid systems, Lecture 9: Timed Automata

S. Nõmm

¹Department of Computer Science, Tallinn University of Technology

07.04.2015

What is Timed Automata

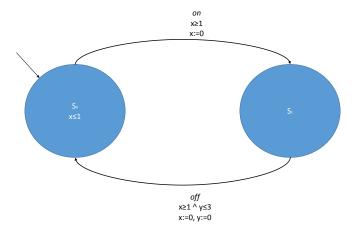
Timed automata are a subclass of hybrid automata

$$TA = (Q, X, \text{Init}, f, D, E, G, R)$$

$$Q = \{q_1, \dots, q_m\}, \quad X = \mathbb{R}^n_+, \quad \text{Init} \subseteq Q \times (0, \dots, 0)^T$$

$$f(q, x) = (1, \dots, 1)^T$$

$$E \subseteq Q \times Q$$


- D(q), G(e) are rectangular sets. (finite boolean combinations of constraints of the form x_i ⋈ a_i (⋈∈ {<, ≤, =, ≥, >}), a_i ∈ Z⁺)
- $R(e, x) = \{x'\}$, where $x'_i = 0$ or $x'_i = x_i$ for all $1 \le i \le n$

Labeled Timed Automata

Labeled timed automata are a subclass of hybrid automata TA = (Q, X, Init, Act, f, D, E, G, R) $\blacktriangleright Q = \{q_1, \dots, q_m\}, \quad X = \mathbb{R}^n_+, \quad \text{Init} \subseteq Q \times (0, \dots, 0)^T$ $\blacktriangleright f(q, x) = (1, \dots, 1)^T$

- Act is the set of events
- $E \subseteq Q \times Q$
- D(q), G(e) are rectangular sets. (finite boolean combinations of constraints of the form x_i ⋈ a_i (⋈∈ {<, ≤, =, ≥, >}), a_i ∈ Z⁺)
- $R(e, x) = \{x'\}$, where $x'_i = 0$ or $x'_i = x_i$ for all $1 \le i \le n$

Example

Timed Automata as Transition System

Let us interpret a timed automaton

$$TA = (Q, X, \text{Init}, \text{Act}, f, D, E, G, R)$$
 as a transition system
 $T_{TA} = (S\Sigma, \rightarrow, S_0 = \text{Init})$:

- S = Q imes X and $(q, x) \in S$ denotes the state
- $\blacktriangleright\ \Sigma=Act\cup\mathbb{T}$, where the generators Act are the event names and \mathbb{T} the continuous evolution
- $(q, x) \xrightarrow{\sigma} (q', x')$ for $+sigma \in Act$ if
 - there exists $(q, \sigma, q') \in E$

erre

➤ x satisfies the guard G(q, σ, q'), {x'} = R(x, (q, σ, q')), and x' satisfies the domain D(q').

•
$$(q, x) \xrightarrow{\mathbb{T}} (q, x')$$
 if $x' = x + \mathbb{T}$ and x' satisfies $D(q)$.

Topics for student presentations

- Equivalence and bisimulation of the transition system
- Languages of timed automata
- Reachability of timed automaton

Important information

NB! Test Nr. 1 Will take place on 14.04.2015

- You are allowed to use your own notes and handouts of lecture slides (should be printed).
- You are not allowed to use computers, books, phones and any other devices allowing communication.