Written test n. 1 (A)

1. Solve for $x .3 x+7 \equiv 11(\bmod 14)$.
2. Given the Bézout identity $3 \cdot 4+11 \cdot(-1)=1$ find $3^{-1} \in \mathbb{Z}_{11}$.
3. Which integers are invertible under multiplication modulo 12 and why?
4. Explain why $6 x \equiv 5(\bmod 10)$ has no solutions.
5. There are two events A and B with probability $\frac{1}{2}$. The probability that both A and B happen is $\frac{1}{100}$. What is the probability that none of these two events happen?
6. There are two events A and B with probability $\frac{1}{3}$. The probability that both A and B happen is $\frac{1}{12}$. What is the conditional probability $\mathrm{P}[A \mid B]$?
7. Explain how you calculate the index of coincidence for input $A B A B B C$?
8. Find the mutual index of coincidence for the strings $A A B B C$ and FFAEE

Written test n. 1 (B)

1. Solve for $x .6 x \equiv 3(\bmod 9)$.
2. Write out the Bézout identity for integers 9 and 39.
3. How many elements are invertible under multiplication in \mathbb{Z}_{99} ?
4. Explain why $\varphi(p)=p-1$ holds for any prime p.
5. There are two events A and B with probability $\frac{1}{3}$. The probability that both A and B happen is $\frac{1}{6}$. What is the probability that none of these two events happen?
6. There are two events A and B with probability $\frac{1}{2}$. The probability that both A and B happen is $\frac{1}{3}$. What is the conditional probability $\mathrm{P}[A \mid B]$?
7. Find the index of coincidence IC for the string CBCCCBAD
8. Find the mutual index of coincidence for the strings CBCC and AGCC

Solutions (A)

1. If $3 x+7 \equiv 11(\bmod 14)$, then $3 x \equiv 4(\bmod 14)$ and hence $x=4 \cdot 3^{-1} \bmod 14$. As from the Bezout identity $(-9) \cdot 3+2 \cdot 14=1$ we imply $3^{-1} \equiv-9 \equiv 5(\bmod 14)$, we have $x=5 \cdot 4 \bmod 14=20$ $\bmod 14=\mathbf{6}$.
2. From $3 \cdot 4+11 \cdot(-1)=1$, it follows that $3^{-1} \bmod 11=4$.
3. The integers $1,5,7,11$ from \mathbb{Z}_{12} are invertible modulo 12 because they are relatively prime to 12 . Thereby, any integer n is invertible modulo 12 , if and only if it is expressible in the form $n=1+12 k, n=5+12 k$, $n=7+12 k$, or $n=11+12 k$, for any $k \in \mathbb{Z}$.
4. The equation $6 x \equiv 5(\bmod 10)$ has no solutions because $\operatorname{gcd}(6,10)=2$ does not divide 5 .
5. $\mathrm{P}[\overline{A \cup B}]=1-\mathrm{P}[A \cup B]=1-\mathrm{P}[A]-\mathrm{P}[B]+\mathrm{P}[A \cap B]=1-\frac{1}{2}-\frac{1}{2}+\frac{1}{100}=\frac{\mathbf{1}}{\mathbf{1 0 0}}$.
6. $\mathrm{P}[A \mid B]=\frac{\mathrm{P}[A \cap B]}{\mathrm{P}[B]}=\frac{1 / 12}{1 / 3}=\frac{3}{12}=\frac{\mathbf{1}}{\mathbf{4}}$.
7. $\mathrm{IC}(\mathrm{ABABBC})=\frac{n_{A}\left(n_{A}-1\right)}{n(n-1)}+\frac{n_{B}\left(n_{B}-1\right)}{n(n-1)}+\frac{n_{C}\left(n_{C}-1\right)}{n(n-1)}=\frac{2}{30}+\frac{6}{30}+\frac{0}{30}=\frac{8}{30}=\frac{\mathbf{4}}{15} \approx \mathbf{0 . 2 6 7}$, where n_{A}, n_{B}, n_{C} are the numbers of A, B, and C , respectively, and $n=6$ is the length of the string.
8. The mutual index of coincidence for the strings $A A B B C$ and FFAEE is

$$
\mathrm{IC}(\mathrm{AABBC}, \mathrm{FFAEE})=\frac{n_{A} \cdot n_{A}^{\prime}}{n \cdot n^{\prime}}=\frac{2 \cdot 1}{5 \cdot 5}=\frac{\mathbf{2}}{\mathbf{2 5}}=\mathbf{0 . 0 8}
$$

Solutions (B)

1. As $\operatorname{gcd}(6,9)=3$ divides 3 the equation is solvable and the solutions are exactly the solutions of $2 x \equiv 1$ $(\bmod 3)$, which implies $x=\mathbf{2}$.
2. We compute $\operatorname{gcd}(9,39)$ using the extended Euclidean algorithm:

$$
\begin{array}{l|l|l|l}
9 & 39 & a & b \\
\hline 9 & 3 & a & b-4 a \\
0 & 3 & a-3(b-4 a) & b-4 a
\end{array}
$$

Hence, $\operatorname{gcd}(9,39)=3$ and the Bezout identity is $(-\mathbf{4}) \cdot \mathbf{9}+\mathbf{1} \cdot \mathbf{3 9}=\mathbf{3}$.
3. The number of invertible elements in \mathbb{Z}_{99} is $\varphi(99)=\varphi\left(3^{2} \cdot 11\right)=\left(3^{2}-3^{1}\right) \cdot(11-1)=\mathbf{6 0}$.
4. If p is prime, then all non-zero elements $x \in \mathbb{Z}_{p}$ are invertible because $\operatorname{gcd}(x, p)=1$. Hence, $\varphi(p)=p-1$.
5. $\mathrm{P}[\overline{A \cup B}]=1-\mathrm{P}[A \cup B]=1-\mathrm{P}[A]-\mathrm{P}[B]+\mathrm{P}[A \cap B]=1-\frac{1}{3}-\frac{1}{3}+\frac{1}{6}=\frac{\mathbf{1}}{\mathbf{2}}$.
6. $\mathrm{P}[A \mid B]=\frac{\mathrm{P}[A \cap B]}{\mathrm{P}[B]}=\frac{1 / 3}{1 / 2}=\frac{\mathbf{2}}{\mathbf{3}}$.
7. $\mathbf{I C}(\operatorname{CBCCCBAD})=\frac{n_{A}\left(n_{A}-1\right)}{n(n-1)}+\frac{n_{B}\left(n_{B}-1\right)}{n(n-1)}+\frac{n_{C}\left(n_{C}-1\right)}{n(n-1)}+\frac{n_{D}\left(n_{D}-1\right)}{n(n-1)}=\frac{0}{56}+\frac{2}{56}+\frac{12}{56}+\frac{0}{56}=\frac{14}{56}=\frac{\mathbf{1}}{4}=\mathbf{0 . 2 5}$, where $n_{A}, n_{B}, n_{C}, n_{D}$ are the numbers of $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D, respectively, and $n=n^{\prime}=4$ is the length of both strings.
8. The mutual index of coincidence for the strings CBCC and AGCC is:

$$
\mathrm{IC}(\mathrm{CBCC}, \mathrm{AGCC})=\frac{n_{C} \cdot n_{C}^{\prime}}{n \cdot n^{\prime}}=\frac{3 \cdot 2}{4 \cdot 4}=\frac{6}{16}=\frac{\mathbf{3}}{\mathbf{8}}=\mathbf{0 . 3 7 5}
$$

