ITC8190
 Mathematics for Computer Science
 Counting: Solving Recurrences

Ahto Truu

November 13th, 2018

Rabbits

Consider a farmer starting to keep rabbits:

- in month 0 , he has no rabbits;
- in month 1 , he buys a pair of newborn rabbits;
- in each following month:
- all existing rabbits continue to live;
- each pair of rabbits at least two months old produces a new pair of rabbits as offspring.
How many pairs of rabbits will the farmer have in month n ?

Fibonacci numbers

The number of pairs of rabbits is defined by:
$F_{0}=0$,
$F_{1}=1$,
$F_{n+2}=F_{n+1}+F_{n}($ for $n \geq 0)$.
So, we have
$F_{2}=F_{1}+F_{0}=1+0=1$,
$F_{3}=F_{2}+F_{1}=1+1=2$,
$F_{4}=F_{3}+F_{2}=2+1=3$,
$F_{5}=F_{4}+F_{3}=3+2=5$,
$F_{6}=F_{5}+F_{4}=5+3=8$,

Linear recurrences

Many counting problems yield recurrent equations.
While there's no general method to solve all recurrences, there are specific methods for common classes, for example linear recurrences.

General linear recurrence (of k-th order) has the form $A_{0}=m_{0}, A_{1}=m_{1}, A_{k-1}=m_{k-1}$, $A_{n+k}=b_{1} A_{n+k-1}+b_{2} A_{n+k-2}+\ldots+b_{k} A_{n}+f(n)$, where m_{i} and b_{j} are constants and $f(n)$ is an arbitrary function on n.

Linear homogeneous recurrence of first order

Let's first consider the special case
$A_{0}=m_{0}$,
$A_{n+1}=b_{1} A_{n}$.
Here it is easy to see the general solution is
$A_{n}=m_{0} b_{1}^{n}$.

Linear homogeneous recurrence of second order

$A_{0}=m_{0}, A_{1}=m_{1}$,
$A_{n+2}=b_{1} A_{n+1}+b_{2} A_{n}$.
By analogy with the previous case, we'll start from looking for solution of the form $A_{n}=q^{n}$. Substituting into the recurrence, we get

$$
\begin{aligned}
& q^{n+2}=b_{1} q^{n+1}+b_{2} q^{n} \\
& q^{n}\left(q^{2}-b_{1} q-b_{2}\right)=0
\end{aligned}
$$

Now the characteristic equation $q^{2}-b_{1} q-b_{2}=0$ may have (a) two distinct solutions $q_{1} \neq q_{2}$, or
(b) two coinciding solutions $q_{1}=q_{2}$.
(a) In case of two distinct solutions $q_{1} \neq q_{2}$, we can see that any linear combination

$$
A_{n}=c_{1} q_{1}^{n}+c_{2} q_{2}^{n}
$$

also satisfies the general recurrent equation, and we can use the boundary conditions to derive the equations

$$
\begin{cases}c_{1}+c_{2} & =m_{0} \\ c_{1} q_{1}+c_{2} q_{2} & =m_{1}\end{cases}
$$

for finding the c_{1} and c_{2} to get the particular solution that satisfies also the boundary conditions.
(b) In case of coinciding solutions $q_{1}=q_{2}$, we can see that any linear combination

$$
A_{n}=c_{1} q_{1}^{n}+c_{2} n q_{1}^{n}
$$

also satisfies the general recurrent equation, and we can use the boundary conditions to derive the equations

$$
\begin{cases}c_{1} & =m_{0} \\ c_{1} q_{1}+c_{2} q_{1} & =m_{1}\end{cases}
$$

for finding the c_{1} and c_{2} to get the particular solution that satisfies also the boundary conditions.

For Fibonacci numbers, the characteristic equation is $q^{2}-q-1=0$,
from which we get
$q_{1}=\frac{1+\sqrt{5}}{2}, q_{2}=\frac{1-\sqrt{5}}{2}$.
From the boundary conditions we then have
$c_{1}+c_{2}=0, c_{1} \frac{1+\sqrt{5}}{2}+c_{2} \frac{1-\sqrt{5}}{2}=1$,
which yields
$c_{1}=\frac{1}{\sqrt{5}}, c_{2}=-\frac{1}{\sqrt{5}}$.
Therefore, the general expression for Fibonacci numbers is

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Linear homogeneous recurrences of higher order

 can be solved following the same pattern:- first we extract the (k-th degree) characteristic equation from the recurrent rule and solve it;
- if the characteristic equation has solutions q_{1}, \ldots, q_{s} with multiplicities $k_{1}, \ldots, k_{s}\left(\right.$ where $\left.k_{1}+\ldots+k_{s}=k\right)$, the general solution has the form

$$
\begin{aligned}
A_{n}= & \left(c_{1,0}+c_{1,1} n+\ldots+c_{1, k_{1}-1} n^{k_{1}-1}\right) q_{1}^{n}+ \\
& \left(c_{2,0}+c_{2,1} n+\ldots+c_{2, k_{2}-1} n^{k_{2}-1}\right) q_{2}^{n}+ \\
& \ldots+ \\
& \left(c_{s, 0}+c_{s, 1} n+\ldots+c_{s, k_{s}-1} n^{k_{s}-1}\right) q_{s}^{n}
\end{aligned}
$$

where the values of the multipliers $c_{i, j}$ can be found using the boundary conditions.

Suppose, for example, that the rabbits would breed as before, but would die after living for a year.

Then the recurrent relation would become
$G_{n+12}=G_{n+11}+G_{n+10}-G_{n}$
and the characteristic equation
$q^{12}-q^{11}-q^{10}+1=0$.
To make the system well-defined we would also need to write out all G_{n} for $n=0 \ldots 11$ as boundary conditions.

The expressions for q_{i} and $c_{i, j}$ arising from this set of equations would be quite horrific, though.

Non-homogeneous recurrences differ by having an extra member in the recurrent relation:
$A_{0}=m_{0}, A_{1}=m_{1}, A_{k-1}=m_{k-1}$,
$A_{n+k}=b_{1} A_{n+k-1}+b_{2} A_{n+k-2}+\ldots+b_{k} A_{n}+f(n)$,
These can be solved using a three-step process:

- find the general solution A_{n}^{\prime} of the corresponding homogeneous recurrence;
- find a particular solution $A_{n}^{\prime \prime}$ of the non-homogeneus recurrence (any one will do);
- the general solution of the non-homogeneus recurrence is then $A_{n}=A_{n}^{\prime}+A_{n}^{\prime \prime}$.

Suppose, for example, that instead of just buying one pair of rabbits on month 1 , the farmer will buy n new pairs of rabbits on month n, for every n.

Then the recurrent relation would become
$H_{0}=0, H_{1}=1$,
$H_{n+2}=H_{n+1}+H_{n}+(n+2)$.
We already know that the general solution of the corresponding homogeneous relation is
$H_{n}^{\prime}=c_{1} q_{1}^{n}+c_{2} q_{2}^{n}$, where
$q_{1}=\frac{1+\sqrt{5}}{2}, q_{2}=\frac{1-\sqrt{5}}{2}$.

We will now look for the particular solution of the non-homogeneous relation among expressions that follow the general form of the non-homogeneous member, that is $H_{n}^{\prime \prime}=\alpha n+\beta$.

Substituting into the recurrence, we get $\alpha(n+2)+\beta=\alpha(n+1)+\beta+\alpha n+\beta+(n+2)$, or $(\alpha+1) n+(\beta-\alpha+2)=0$.

This expression must hold for all n, therefore
$\alpha+1=0$, or $\alpha=-1$, and
$\beta-\alpha+2=0$, or $\beta=-3$, or
$H_{n}^{\prime \prime}=-n-3$.

So, we have the general solution $H_{n}=c_{1} q_{1}^{n}+c_{2} q_{2}^{n}-n-3$, where
$q_{1}=\frac{1+\sqrt{5}}{2}, q_{2}=\frac{1-\sqrt{5}}{2}$
Finally, the boundary conditions
$H_{0}=0, H_{1}=1$ yield
$c_{1}=\frac{7+3 \sqrt{5}}{2 \sqrt{5}}, c_{2}=\frac{-7+3 \sqrt{5}}{2 \sqrt{5}}$,
and thus the complete solution is

$$
H_{n}=\frac{7+3 \sqrt{5}}{2 \sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\frac{-7+3 \sqrt{5}}{2 \sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}-n-3
$$

THANK YOU FOR YOUR ATTENTION ANY QUESTIONS?

