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MARKOV MODEL

Model to describe complex processes
Named after Andrey Markov (1856-1922)

Markov Processes: A memoryless chain of states.

Memoryless: (Markov Assumption) The next state depends only on the the current state.
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JOINT DISTRIBUTION

Stochastic processes: A processes, in which the state evolution is random over time.

Any joint distribution over sequences of states can be factored according to the chain rule 
into a product of conditional distributions: 
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EXAMPLE
What is the probability of a sentence: ”The cat sat on the mat ?”

p(The cat sat on the mat) = 

p(The) ×

p(cat | The) ×

p(sat | The cat) ×

p(on | The cat sat) ×

p(the | The cat sat on) ×

p(mat | The cat sat on the) 

Problem: Infeasible
amount of data
necessary to learn
all the statistics
reliably.
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MARKOV PROCESS

Let us suppose that the future is independent of the past given the present. Can we, in the real life? 

Combining the Markov assumption with the chain rule: 

Instead of: 
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THE SENTENCE AGAIN

p(The cat sat on the mat) = 

p(The) × p(cat | The) × p(sat | cat) × p(on | sat) × p(the | on) × p(mat | the) 

MORE 

COMPUTATIO
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FRIE
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MARKOV CHAIN

The sequence generated by a Markov process is called the Markov chain.

Usually it is assumed that the Markov chain is time-invariant or stationary - this means that the 
probabilities                      do not depend on time. 

For example in language modelling the probability                      does not depend on the positions 
of these words in the sentence. 
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EXAMPLE

States
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TRANSACTION MATRIX

A stationary Markov model with N states can be described by 
an N × N transition matrix: 

SCHOOL Home

Library

p = 0,7

p = 0,4

p = 0,1

p =
 0,

6
p =

 0,
1

p = 0,3

p = 0,1

p = 0,2 p = 0,5



TALLINN UNIVERSITY OF TECHNOLOGY

STATE DIAGRAM
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State transition matrices can be visualized with a state 
transition diagram. 

State transition diagram is a directed graph where arrows 
represent legal transitions. 

Drawing state transition diagrams is most useful when N is 
small and Q is sparse. 
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GRAPHICAL MODELS

A way of specifying conditional independencies.

Directed graphical model: DAG.

Nodes are random variables.

A node’s distribution depends on its parents.

Joint distribution:

A node’s value conditional on its parents is independent of other ancestors. 
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MARKOV CHAIN AS GRAPHICAL MODEL

Graph interpretation differs from state transition diagrams:

Nodes represent state values at particular times

Edges represent Markov properties 
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MARKOV CHAIN TRAINING

Training data is given in the form of sequences (from observations for example)

Number of occurrence of any two consecutive values can be counted. (How many “The -> cat” pair exists?)

Probability:

In general, if Ni,j is the number of times the value i is followed by the value j: 
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MARKOV CHAIN ORDER

First-order Markov model was discussed until now. 

It is also called bigram model (especially in language modelling) 

The marginal probabilities are called unigram probabilities 

In the unigram model all the variables are independent:

Higher order Markov chains: a second order model operates with trigrams: 
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PROBLEMS

Few realistic sequential processes directly satisfy the Markov assumption.

Markov chains cannot capture long-range correlations between observations.

Increasing the order leads the number of parameters to blow up.

Solution: the hidden Markov models (HMM).

In HMM there is an underlying hidden process that can be modelled with a first-order 
Markov chain.

The data is the noisy observation of this process.
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EXAMPLE – HANDWRITTEN CHARACTERS

What is the hidden process?
What can be modelled with first order Makarov chain?
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HMM SPECIFICATION
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JOINT DISTRIBUTION
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DETAILS

Compute marginal probabilities of hidden variables.

Filtering (on-line):compute the belief states

Smoothing: (off-line, using all the evidences) compute the probabilities:

Find the most likely sequence of hidden variables - Viterbi decoding. (weather/mood example)
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FILTERING

Computing is called filtering, because it reduces noise in comparison 
to computing just                     . 

Filtering is done using forward algorithm. 

Forward algorithm uses dynamic programming - this means the algorithm is recursive but we reuse the already 
done computations. 

Input: - Transition matrix 
- Initial state distribution
- Observation matrix containing probabilities p(yt | xt) 

Compute the forward probabilities: 

Forward algorithm
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SMOOTHING

Smoothing computes the marginal probabilities p(xt | y1:T )      off-line, using all the evidence 

It is called smoothing, because conditioning on the past and future data, the uncertainty will 
be significantly reduced. 

Smoothing is performed using forward-backward algorithm. 
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FORWARD-BACKWARD ALGORITHM

Break the chain into past and future: 

Compute the forward probabilities in traditional way:

Compute the backward probabilities: 
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OPTIMAL STATE ESTIMATION

Compute the smoothed posterior marginal probabilities:

Probabilities measure the posterior confidence in the true hidden states.

Takes into account both the past and the future.



TALLINN UNIVERSITY OF TECHNOLOGY

OPTIMAL SEQUENCE ESTIMATION

Viterbi algorithm computes:

Using dynamic programming it finds recursively the probability of the most likely state sequence 
ending with each 

A backtracking procedure picks then the most likely sequence. 
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LEARNING HMM

If latent state sequence is available during training, then the transition matrix, observation matrix and initial state 
distribution can be estimated by normalized counts.

Typically the hidden state sequences are not known.

EM algorithm is used, that iteratively maximizes the lower bound on 
the true data likelihood.

E-step: Use current parameters to estimate the state using forward-
backward.

M-step: Update the parameters using weighted averages.



DO YOU HAVE ANY QUESTIONS?


